COMMERCIAL HEAT PUMP WATER HEATING: DESIGN & MAINTENANCE

Colin Grist & Evan Green Ecotope, Inc.

ЕСОТОРЕ

SCOPE & SEQUENCE

Session 1: (Oct 26th)
What is a CHPWH system?

Session 2: (Nov 3rd)
 What key design considerations are essential for success?

Session 3: (Nov 10th)
From design to implementation

Session 4: (Nov 17th)
 How to maintain CHPWH system operation?

REVIEW: CHPWH SYSTEMS

EXAMPLES OF **SYSTEMS**

Small Commercial System

(closet installation serving 5 apts)

Large Commercial System (basement installation serving 250 apts)

Multiple Sizes, Types, & Configurations

Multiple Commercial Systems (residential equipment serving 4-5 apts)

AVAILABLE PRODUCTS

Single- or Multi-Pass

R-134a

FOUR CHPWH SYSTEM **COMPONENTS**

HW STORAGE

TEMPERATURE MAINTENANCE TANK

TEMP. MAINT. HPWH

COMMERCIAL HPWH SKID EQUIPMENT

Manufacturers are working to provide skid options that are **easy to install**, **reliable** and result in **energy savings**.

Joining as a participant?

No account needed.

6

ULT

8'-0"

TH I

EDRC

We want to hear from you!

KIT.

GO TOSLIDO.COM

Enter event code: DESIGN2

BREAKFAS

8.0

LAUN

KEY QUESTION:

What factors are essential for CHPWH system design?

...THE ANSWER:

- Thermal stratification in the storage tanks
- Configuration of the temperature maintenance system
- Managing distribution system losses
- System sizing

CASE STUDY: JACKSON APARTMENTS

JACKSON **APARTMENTS**

JACKSON APARTMENTS

JACKSON APARTMENTS

New construction

(2) Colmac CxA-15, single pass(3) 500 gal tanks

Parallel loop configuration (1) Colmac CxV-5; (1) 500 gal tank \bigcirc

Garage

15.1 % annual energy savings (total building)

PRIMARY HW STORAGE

TEMPERATURE MAINTENANCE SYSTEM

KEY TAKEAWAY:

Large, central systems using commercial equipment can be effectively utilized to deliver high efficiency water heating.

LET'S PAUSE FOR QUESTIONS

EQUIPMENT EFFICIENCY BOUNDARIES

ESSENTIAL DESIGN CONSIDERATIONS

• Thermal stratification in storage tanks

• Configuration of the TMS

 Managing distribution system losses

System sizing

HW STORAGE SYSTEMS: THERMAL STRATIFICATION

Air Source Heat Pump

Storage Tank

THE IMPORTANCE OF THERMAL STRATIFICATION

- HPs are very efficient at ${ \bullet }$ making **cold** water **hot**
- HW circulates through the distribution piping
- Water returns from the building slightly cooled
- Return water causes mixing & destratification in the storage tank
- HPs are not very good at making warm water hot

TEMPERATURE MAINTENANCE SYSTEM

The TMS includes:

- Distribution piping
- Mixing valve
- Circulation pump
- Dedicated storage tank w/heat source

LET'S PAUSE FOR QUESTIONS

ESSENTIAL DESIGN CONSIDERATIONS

 Thermal stratification in storage tanks

• Configuration of the TMS

 Managing distribution system losses

System sizing

WHAT WILL THE HW DISTRIBUTION SYSTEM LOOK LIKE?

TEMPERATURE MAINTENANCE SYSTEMS: INTRO

Dedicated HPWH connected by parallel piping

Dedicated swing tank connected in

Primary & Temperature Maintenance System are combined

Heat Tape

SINGLE-PASS PRIMARY HPWH SYSTEM W/ PARALLEL TEMPERATURE MAINTENANCE TANK & MULTI-PASS HPWH

KEY CONSIDERATIONS:

- Single pass heating system for primary
- Dedicated heating system for temperature maintenance
 - Two systems work in parallel

SINGLE-PASS PARALLEL EQUIPMENT

YESLER III: CYPRESS COLMAC

Temperature Maintenance Storage Tank

st

TEMPERATURE MAINTENANCE SYSTEMS: INTRO

OPTIONS

Dedicated Parallel [0]

Dedicated Series 02

Combined

Dedicated HPWH connected by parallel piping

Dedicated swing tank connected in series

Primary & Temperature Maintenance System are combined

Heat Tape

SINGLE-PASS PRIMARY HPWH SYSTEM W/ SERIES TEMPERATURE MAINTENANCE TANK (SWING TANK)

KEY CONSIDERATIONS:

 Single pass heating system for primary

 Dedicated heating system for temperature maintenance

Two systems work in series

SINGLE-PASS EQUIPMENT

ELIZABETH JAMES SANDEN GEN3 CO₂

Thermostatic Mixing Valves Temperature Maintenance Tank (Swing Tank)

LET'S PAUSE FOR QUESTIONS

RECAP: DEDICATED HPWH SYSTEMS

IN SERIES SWING TANK

IN PARALLEL MULTI-PASS HPWH

TEMPERATURE MAINTENANCE SYSTEMS: INTRO

4 OPTIONS

03 Combined

4 **No Recirculation**

Dedicated HPWH connected by parallel piping

Dedicated swing tank connected in series

Primary & Temperature Maintenance System are combined

Heat Tape

COMBINED SYSTEM

KEY CONSIDERATIONS:

- "All eggs in one basket"
- Both primary & maintenance loads done by one system

RISKS:

- Cycling & Sizing issues
- Low effective storage volume
- Low HPWH COP
- Technology dependent

TEMPERATURE MAINTENANCE SYSTEMS: INTRO

4 OPTIONS

04 **No Recirculation**

Dedicated HPWH connected by parallel piping

Dedicated swing tank connected in series

Primary & Temperature Maintenance System are combined

Heat Tape

TEMPERATURE MAINTENANCE SYSTEM: NO RECIRCULATION

 Lack of recirculation system is uncommon

Heat tape/trace is an option

LET'S PAUSE FOR QUESTIONS

ESSENTIAL DESIGN CONSIDERATIONS

 Thermal stratification in storage tanks

• Configuration of the TMS

 Managing distribution system losses

System sizing

OPTIONS FOR REDUCING THE **TEMPERATURE MAINTENANCE LOSSES**

GOOD EXAMPLE: PIPE CLAMP ACTS AS A THERMAL BREAK

HIGH EFFICIENCY PLUMBING DISTRIBUTION SYSTEMS

APPENDIX M SIZING (UPC 2018)

Reduces pipe size in building

> Reduces volume of water & associated losses

Jurisdiction dependent in CA

2018 IFORM

AN AMERICAN N

101.0 Genera M 101.1 Applicability. This ap imating the demand load for the building water supply and neipal branches for single- and multi-family dwellings with conserving plumbing fixtures, fixture fittings, and

102.0 Demand Load. M 102.1 Water-Conserving Fixtures, Plumbing fixtures nces shall not exceed the desig

ESIGN FLOW RATE FOR WATER-CO

FIXTURE AND APPLIAN

Bar Sink	
Bathtub	
Bidet	
Clothes Washer*	
Combination Bath/Shower	
Dishwasher*	
Kitchen Faucet	
Laundry Faucet (with acrator)	
Lavatory Faucet	
Shower, per head	
Water Closet, 1.28 GPF Gravity Tan	k
or SI units: 1 gallon per minute = 0.06 L	h

I 102.2 Water Demand Calculator. The estimated de lator available for download at http://www.iapmo.org

rate for the building supply and principal branches a rs shall be determined by the IAPMO Water Dema Stand/Pages/WaterDemandCalculator.asnx 102.3 Meter and Building Supply. To deter ign flow rate for the water meter and building supply, ente total number of indoor plumbing fixtures and appliance the building in Column [B] of the Water Demand Calci nd run Calculator. See Table M 102.3 for an e M 102.4 Fixture Branches and Fixture Supplies. To

	Sizing Method	Flowrate (GPM)	CW main
ONAL STANDARD	Appendix A	260	<mark>4</mark> "
	Appendix A + C	205	3.5"
	Appendix M	54	2"

APPENDIX M PEAK WATER DEMAND CALCULATOR

d Calculator and run Calculator. The flow rate for

fixture branch and one fixture supply shall be the design flo

demands in gallons per minute (gpm) for lawn sprinklers onditioners, hose bibbs, etc., shall be added to the total e ated demand for the building supply as detern

n the plumbing system, the demand for only one hos

shall be added to the total estimated demand for the build

supply. Where a hose bibb is installed on a fixture branch, th mand of the hose bibb shall be added to the design flow r the fixture branch as determined by Section M 102.4

M 102.6 Other Fixtures. Fixtures not included in Table 02.1 shall be added in Rows 12 through 14 in the Wa after as Other Fixture. The probability of or Other Fixtures shall be added by selec

102.7 Size of Water Piping per Appendix A. Exc

provided in Section M 102.0 for estimating the deman ad for single- and multi-family dwellings, the size of eac

ability of use and flow rate from Col

endix A. After de

th the Water Demand Calculator, the diame

Chart A 105.1(1) through Chart A 105.1(7) plicable, in accordance with Section A 105. 06.0. Velocities shall be in accordance with

building supply pipe, branches and risers shall I

section A 107.0. Appendix I, Figure 3 and Figure 4 shall

M102.7.1 Minimum Fixture Branch Size. Th

um fixture branch size shall be 1/2 inch (15 mm)

mitted when sizing PEX systems.

on A 104.0 and the demand flow

rate of the fixture according to Table M 102.1. M 102.5 Continuous Supply Demand. Contin

tion M 102.3. Where there

MAXIMUM DESIGN FLOW RATE (gallons per minute)		
	1.5	
	5.5	
	2.0	
	3.5	
	5.5	
	1.3	
	2.2	
	2.0	
	1.5	
	2.0	
	2.0	

	[A] FIXTURE	[B] ENTER NUMBER OF FIXTURES	[C] PROBABILITY OF USE (%)	[D] ENTER FIXTURE FLOW RATE (GPM)	(E) MAXIMUM RECOMMENDED FIX TURE FLOW RATE (GPM)	
1	Bar Sink	0	2.0	1.5	1.5	
2	Bathtub	0	1.0	5.5	5.5	
3	Bidet	0	1.0	2.0	2.0	
4	Clothes Washer	1	5.5	3.5	3.5	
5	Combination Bath/Shower	1	5.5	5.5	5.5	
6	Dishwasher	1	0.5	1.3	1.3	
7	Kitchen Faucet	1	2.0	2.2	2.2	
8	Laundry Faucet	0	2.0	2.0	2.0	
9	Lavatory Faucet	1	2.0	1.5	1.5	
0	Shower, per head	0	4.5	2.0	2.0	
11	Water Closet, 1.28 GPF Gravity Tank	1	1.0	3.0	3.0	
12	Other Fixture 1	.0 \/	0.0	A -0.0	6.0	
13	Other Fixture 2	00	0.0	0.0	6.0	
14	Other Fixture 3	0.0	0.0	0.0	6.0	
Total Number of Fixtures		6.		-	BUN WATER DEMAND	
99th Percentile Demand Flow =		8.5 GPM		HESET	CALCULATOR	

M 102.8 Examples Illustrating Use of Water Demand Calculator with Appendix A.

Example 1: Indoor Water Use Only ven Information

riction loss ner 100 ft-

kitchen faucet

dishwasher

vpe of construction ype of pipe mater ure number/typ

Solution: Step 1 of 2 - Find Demand Load for the Build ing Supply.

The Water Demand Calculator [WDC] in Figure 2 is used to the water behavior cardinater (wbc) in Figure 2 is used to determine the demand load expected from indoor water use. The WDC has white-shaded cells and light gray-shaded cells. The values in the light gray cells are derived from a national survey of indoor water use at homes with efficient fixtur and cannot be changed.

The white-shaded cells accept input from the designed For instance, fixture counts from the given information are ntered in Column [B]: the corresponding recommended fixre flow rates are already provided in Column [D]. The flow tes in Column [D] may be reduced on Column [D]. The ho tes in Column [D] may be reduced only if the manufactur ecifies a lower flow rate for the fixture. Column [E] esta shes the upper limits for the flow rates entered into Column [D]. Clicking the Run Water Demand Calculator button gives 5 gpm as the estimated indoor water demand for the whole in the dark gray box of the WDC

TEMPERATURE MAINTENANCE SYSTEMS: **REVIEW**

CONSIDERATIONS:

- Scale of the distribution system and associated losses
- Drive the temperature maintenance HW distribution losses down
 - Piping insulation and thermal bridges
 - UPC Appendix M
- Understand the equipment: Single-pass or Multi-pass HPWH
- Dedicated systems are more reliable
- Reheat with losses efficiently, often 30% of the annual DHW load

LET'S PAUSE FOR QUESTIONS

ESSENTIAL DESIGN CONSIDERATIONS

 Thermal stratification in storage tanks

• Configuration of the TMS

 Managing distribution system losses

System sizing

SYSTEM **SIZING**

 Gas systems are sized w/low storage and high heat capacity

 HPWH systems are sized w/ high storage and low heat capacity

 $\Box H_2O STORAGE$ $\Box HEAT CAPACITY$

H₂O STORAGE HEAT CAPACITY

SYSTEM **SIZING**

Multi Family Domestic Hot Water (DHW) Demand

ECOSIZER ecosizer.Ecotope.com

Tank Volume 285 Gallons

Swing Tank Volume 80 Gallons

Heating Capacity 66.8 kBTU/hr

Swing Resistance Element 4.7 kW · 15.9 kBTU/hr

THIS SYSTEM WAS SIZED FOR

Occupancy 60.0 People

Apartments

Daily Hot Water Usage 25.0 Gallons per Day per Person

Total Hot Water 1500 Gallons per Day Try it!

- Turn off CA mode
- 60 people
- 30 apartments
- 25 gallons per day

						<image/>
	Rheem	SanCO2	AO Smith	Mitsubishi	Colmac	Nyle
Size	>lton	1.25 tons	2.5 tons	10 tons	10 - 30 tons	10 - 30 tons
Market delivery	unitary	split	unitary	split	split	split
System design	multi pass	single pass	multi pass	single pass	single or multi pass	single or multi pass
Refrigerant	R-134a	CO ₂ / R-744	R-134a	CO ₂ / R-744	R-134a	R-134a
Minimum ambient air temperature	37 °F	-20 °F	45 °F	-15 °F	40 °F	40 °F
Maximum outlet water temperature	145 °F	149 °F	145 °F	165 °F	165 °F	165 °F

* some generalizations

ECOSIZER ecosizer.Ecotope.com

Air Temperature vs. Heat Capacity

PUTTING THE PIECES TOGETHER

UPCOMING TRAINING & RESOURCES

Seattle City Light, in collaboration with the Lighting Design Lab 2021

(https://www.lightingdesignlab.com/education)

CHPWH: Design, Operations, and Maintenance

(8-hour seminar)

Oct 26, Nov. 3, 10, 17

10am-12pm

To host a training session, or for more information, contact: Lauren Bhaskar at: LBHASKAR@DRINTL.COM

UPCOMING TRAINING & RESOURCES

Seattle City Light, in collaboration with the Lighting Design Lab 2021

(https://www.lightingdesignlab.com/education)

CHPWH: Design, Operations, and Maintenance

(8-hour seminar)

- Oct 26, Nov. 3, 10, 17
 - 10am-12pm

To host a training session, or for more information, contact: Lauren Bhaskar at: LBHASKAR@DRINTL.COM

UPCOMING TRAINING & RESOURCES

SDGE 2021

(SDGE.COM/ENERGY-INNOVATION-CENTER/EDUCATION-TRAINING)

CHPWH: Design & Maintenance (8-hour seminar)

Oct 5, 7, 12 & 14

CHPWH ONLINE EDUCATION launches October 11th!

- CHPWH System Components, Sizing, and Design
- Measurement and Verification: A Unified Approach to CHPWH Performance Data
- CHPWH: Manufacturer Training and Resources
- CHPWH: Maintenance and Operations
- Installation of CHPWHs in New Construction

To host a training session, or for more information, contact: Lauren Bhaskar at: LBHASKAR@DRINTL.COM

THANK YOU

THE OWNER WATER

