COMMERCIAL HEAT PUMP WATER HEATING: ENGINEERING DEEP DIVE

Colin Grist, PE, Ecotope, Inc.

D+R LEARN

ЕСОТОРЕ

OBJECTIVES

- Let's explore a case study
- Deep dive into design considerations
- Ecosizer: size effectively
- Refrigerant & equipment selection

CASE STUDY: JACKSON APTS

BUILDING INFO: • 7 Stories, 2 Buildings East - 163 units West - 369 units Total - 532 units Mid-rise; Multi-Family 2 Central HPWH systems • Seattle, WA 1575 + 0505 +

AVAILABLE **PRODUCTS**

Single- or Multi-Pass

R-134a

BUILDING INFRASTRUCTURE:

- DHW Room:
 - 740 ft²
 - ventilated enclosed parking garage
 - 26 ft² exhaust air louver
 - 36 ft² intake air opening (door)
- Electrical capacity for HPWH system
 - w/ electric backup: 87.85 kW
 (540 W/apt)
 - w/out electric backup: 30.85 kW (190 W/apt)

• Primary:

- (2x) Colmac CxA 15-ton
 - Single pass, R-134a
- (1x) 36 kW Electric WH (backup)
- (3x) 500g tanks = 1,500 gallons

• Temperature Maintenance:

- Dedicated storage tank
- (1x) Colmac CxV 5-ton
 - Multi-pass, R-410a
- (1x) 21 kW Electric WH (backup)
- Third-party controller

SHOWN HERE:

- Primary heaters:
 - Two Single-pass Colmac HPWH
 - 15-tons each
 - CxA series (R-134A)
 - located in an buffered space (enclosed ventilated below grade parking structure)
 - Full backup due to cool Seattle climate & owner decision

SHOWN HERE:

• Temperature Maintenance:

- Dedicated storage tank with back-up electric element
- Multi-pass Colmac 5-ton HPWH

• CxV series (R-410a)

SHOWN HERE:

• Controls:

Manages:

- Primary heaters
- Temperature maintenance heaters
- Backup equipment
- Sends alarms and notifications to building maintenance personal

LET'S PAUSE FOR QUESTIONS

HW SYSTEM DESIGN: A DEEP DIVE

EQUIPMENT EFFICIENCY BOUNDARIES

KEY DESIGN CONSIDERATIONS

HW distribution systems System sizing Refrigerant & equipment selection

HW DISTRIBUTION SYSTEMS & IMPACT ON THERMAL STRATIFICATION

HW STORAGE SYSTEMS: THERMAL STRATIFICATION

Air Source Heat Pump

Storage Tank

HEAT PUMP **PERFORMANCE**

Warmer Leaving Water

CAPACITY IMPACTS:

- Limits of Refrigerant
- Lower Air Temperature
- Defrost Effects

Max capacity	ope
	58.6
	52.8
	46.9
apacity (kW)	41.0
	35.2
	29.3
Ğ	23.4
	17.6
	11.7
	5.9

0

Outlet water temperature 150°F (66°C) ration mode

LET'S PAUSE FOR QUESTIONS

TEMPERATURE MAINTENANCE SYSTEMS: INTRO

Dedicated HPWH connected by parallel piping

Dedicated swing tank connected in

Primary & Temperature Maintenance System are combined

Heat Tape

SINGLE-PASS PRIMARY HPWH SYSTEM W/ PARALLEL **TEMPERATURE MAINTENANCE TANK & MULTI-PASS HPWH**

KEY CONSIDERATIONS:

- Single pass heating system for primary
- Dedicated heating system for temperature maintenance
 - Two systems work in parallel

SINGLE-PASS PARALLEL EQUIPMENT

YESLER III: CYPRESS COLMAC

Temperature Maintenance Storage Tank

st

TEMPERATURE MAINTENANCE SYSTEMS: INTRO

OPTIONS

Dedicated Parallel []

Dedicated Series 02

Combined

Dedicated HPWH connected by parallel piping

Dedicated swing tank connected in series

Primary & Temperature Maintenance System are combined

Heat Tape

SINGLE-PASS PRIMARY HPWH SYSTEM W/ SERIES TEMPERATURE MAINTENANCE TANK (SWING TANK)

KEY CONSIDERATIONS:

 Single pass heating system for primary

 Dedicated heating system for temperature maintenance

Two systems work in series

SINGLE-PASS SERIES EQUIPMENT

ELIZABETH JAMES SANDEN GEN3 CO₂

Thermostatic Mixing Valves Temperature Maintenance Tank (Swing Tank)

SINGLE-PASS SERIES SKID EQUIPMENT

Manufacturers are working to provide skid options that are easy to install, reliable and result in energy savings.

That's a lot to think about! LET'S PAUSE FOR QUESTIONS

BIRDS EYE VIEW

RECAP: DEDICATED HPWH SYSTEMS

IN SERIES SWING TANK

IN PARALLEL MULTI-PASS HPWH

TEMPERATURE MAINTENANCE SYSTEMS: INTRO

4 OPTIONS

03 Combined

4 **No Recirculation**

Dedicated HPWH connected by parallel piping

Dedicated swing tank connected in series

Primary & Temperature Maintenance System are combined

Heat Tape

COMBINED SYSTEM

KEY CONSIDERATIONS:

• "All eggs in one basket."

 Both primary & maintenance loads done by one system.

RISKS:

- Cycling & Sizing issues
- Low effective storage volume
- Low HPWH COP
- Technology dependent

TEMPERATURE MAINTENANCE SYSTEMS: INTRO

4 OPTIONS

04 **No Recirculation**

Dedicated HPWH connected by parallel piping

Dedicated swing tank connected in series

Primary & Temperature Maintenance System are combined

Heat Tape

TEMPERATURE MAINTENANCE SYSTEM: NO RECIRCULATION

Lack of Recirculation System is uncommon Heat tape/trace is an option

TEMPERATURE MAINTENANCE SYSTEMS: **REVIEW**

LET'S PAUSE FOR QUESTIONS

HW SYSTEM DESIGN: SIZING

SYSTEM **SIZING**

- Gas systems are sized w/ low storage and high heat capacity
- HPWH systems are sized w/ high storage and low heat capacity

H₂O STORAGE HEAT CAPACITY

H₂O STORAGE HEAT CAPACITY

SYSTEM **SIZING**

Multi Family Domestic Hot Water (DHW) Demand

ECOSIZER ecosizer.Ecotope.com

THIS SYSTEM WAS SIZED FOR

Occupancy 60.0 People

Apartments 30.0 Units

Daily Hot Water Usage 25.0 Gallons per Day per Person

Total Hot Water 1500 Gallons per Day

HW SYSTEM DESIGN: REFRIGERANT & EQUIPMENT

AVAILABLE PRODUCTS

R-134a

REFRIGERANTS: **GWP OF SELECTED REFRIGERANTS** (CARBON DIOXIDE EQUIVALENTS, CO₂e)

	Refrigerant			
	R-744 (CO ₂)	R-1234yf	R-134a	R-410A
COP*	3.2	2.7 ?	2.7	2.5
<i>i</i> Ambient Air Temp	-25 °F	35 °F ?	35 °F	-5 °F
ischarge H ₂ O Temp	190 °F	160 °F ?	160 °F	140 °F
*COPs are for Seattle - expect better performance in warmer climates				

REFRIGERANT & EQUIPMENT SELECTION

REFRIGERANT & EQUIPMENT: DEFROST

CONSIDERATIONS:

 During defrost, HPs typically don't provide heat

 Defrost cycles vary depending on MFGs. and refrigerant used

 Active vs Passive:
 Active: unit operates in reverse

 Passive: fan is used to melt frost/ice

PUTTING THE PIECES TOGETHER

- Components of a CHPWH system
- How HPWHs work
- Primary Storage
- Temperature Maintenance System
- Controls

UPCOMING TRAINING & RESOURCES

Seattle City Light, in collaboration with the Lighting Design Lab 2021

(https://www.lightingdesignlab.com/education)

CHPWH: Design, Operations, and Maintenance

(8-hour seminar)

- Oct 26, Nov. 3, 10, 17
 - 10am-12pm

To host a training session, or for more information, contact: Lauren Bhaskar at: LBHASKAR@DRINTL.COM

THANK YOU

THE OWNER WATER

THANK YOU TO OUR COLLABORATORS

