Cost-Effective Code Compliance

Envelope

Seattle City Light Lighting Design Lab January 26, 2021

Before we Begin...

During the Webinar

- Attendees will be muted
- Please use the chat feature in the control panel to submit questions to LDL staff
- The presenter will pause to address questions periodically.

Please participate in the online polls.

Following the Webinar

- Please take the short survey
- A recording and the slide deck will be posted on LDL's webpage
- Reach out to <u>LightingDesignLab@seattle.gov</u> with comments or questions.

Brought to you by:

Customer Care & Energy Solutions Division

Powered by
Seattle City Light

2018 Construction Code Changes

- Building code
- Residential code
- Mechanical code
- Energy code
- Fuel gas code
- Plumbing code
- Fire code
- Electrical code
- Boiler code

Seattle City Light

2018 Seattle Energy Code

for "Commercial Buildings" – not single-family or low-rise multifamily

"2018" Code Timeline

- Nov 2017: IECC published
- Nov 2019: WSEC approved
- July 2020: WSEC goes into effect
- Feb 1, 2021: WSEC effective date
- Jan Sept: Seattle public meetings
- Sept Oct: Review by CCAB
- Dec Mayoral approval
- Jan City Council approval
- March 15, 2021: SEC effective date

It's not whether we're going to do this, it's how

Washington state: 70% less building energy use by 2030

- Zero-carbon buildings
- ...or by 2027?

<u>Washington state</u>: 45% reduction in GHG emissions by 2030

95% reduction by 2050

<u>Seattle</u>: Carbon-neutral buildings & vehicles by 2050

 …or sooner with Green New Deal?

Seattle amendments: 4 Guiding Principles

- 1. Envelopes meet our "2050" standard
 - We have to decide what that 2050 standard is
- 2. No "internal combustion buildings"
 - Electrical infrastructure for exceptions
- 3. Efficient use of electricity
 - Typically heat pumps for space heating & water heating
 - Highly efficient systems & controls
- 4. Increased on-site renewables
 - Options for off-site purchase
 - Plus "solar readiness" for bigger future system

New buildings must be *capable of* meeting Seattle's 2050 targets (without major surgery)

Today:

Envelope

Thermal envelope is boring – and effective

- Reliable energy savings
- Lasts for generations
- ...but invisible

Chapter 3 – Even less exciting than Chapter 2

- Rules for installing and labeling insulation & fenestration
- Default U-values for fenestration
 - Don't use these if you can help it
- Default spandrel panel table and equations
 - Usually better to use manufacturer's values
- Curtain wall & window wall performance are really much worse than this
- Definitions in Chapter 2 not always obvious
 - Steel-framed wall, single rafter roof, roof recover, opaque door, mass transfer deck slab...

And talking about mass transfer decks...

MASS TRANSFER DECK SLAB ((EDGE)). That portion of the above-grade wall made up of the concrete slab where it extends past the footprint of the floor above.)) A concrete slab designed to transfer structural load from the building perimeter wall or column line above, laterally to an offset wall or column line below, and which has conditioned or semi-heated space on the inside of the upper wall and exterior or unconditioned space on the outside of the upper wall. The area of the slab edge shall be defined as the thickness of the slab multiplied by the ((perimeter)) length of the edge condition. Examples of this condition include, but are not limited to, the transition from an above-grade structure to a belowgrade structure or the transition from a tower to a podium. A cantilevered concrete balcony does not constitute a mass transfer deck slab.

Seattle: Bonus U-value prizes

- h. Intermediate concrete floor slabs penetrating the *building thermal envelope* shall comply with Section C402.2.9. The area of such penetrating concrete floor slabs shall be defined as the thickness of the slab multiplied by the length of the penetration. The "exposed concrete" row in Table A103.3.7.2 shall be used for typical default *U*-factors for the penetrating concrete slab.
- i. Value applies to concrete columns and concrete walls that interrupt mass floor insulation, but not to perimeter walls or columns separating interior *conditioned space* from exterior space.

Walls, Above Grade						
	((U-0.104^d))	((U-0.078))				
	<u>U-0.057</u>	<u>U-0.057</u>				
Mass transfer deck slab <mark>edgeⁱ</mark>	U-0.20	U-0.20				
Slab penetrating thermal envelope wall ^h	<u>U-0.10</u>	<u>U-0.10</u>				
Metal building <mark>k</mark>	U-0.052	U-0.052				
Steel framed <mark>k</mark>	U-0.055	U-0.055				
Wood framed and other <mark>k</mark>	((U-0.05 4)) <u>U-0.051</u>	U-0.051				
<u>Floors</u>						
Mass ^e	<mark>U-0.031</mark>	<mark>U-0.031</mark>				
	((U-0.029))	((U-0.029))				
Joist/framing	<u>U-0.029 steel joist</u>	<u>U-0.029 steel joist</u>				
	<u>U-0.025 wood joist</u>	<u>U-0.025 wood joist</u>				
Concrete column or concrete wall	<mark>U-0.55</mark>	<mark>U-0.55</mark>				
floor ⁱ						
Concrete slab floor directly above an electrical utility vault	N.R.	N.R.				
City Light Falighting		11				

Seattle City Lig

Wood-framed Walls: § C402.1.3 – Insulation Component R-value Method

2015	WSEC-C/ SEC	-C	2018	WSEC-C	
Tab	ole C402.1.3		Table (2402.1.3	
CLIMATE ZONE	5 AND N	IARINE 4	CLIMATE ZONE	5 AND M	IARINE 4
All Other Group J				All Other	Group R
V	Walls, Above Grade		Walls,	Above Grade	
Mass	R-9.5° ci	R-13.3ci	Mass <u>h</u>	R-9.5ci ^c	R-13.3ci
Metal building	R-19ci	R-19ci	Mass transfer deck slab	<u>R-5</u>	<u>R-5</u>
Steel framed R-13 + R-10ci		R-19 + R-8.5ci	Metal buildings	R-19ci or R = 13 + 13ci	R-19ci or R = 12 + 12ci
Wood framed and other	R-21 int	R-21 int	Steel framed	R-13 + R-10ci	R-19 + R-8.5ci
			Wood framed and other	$\frac{\text{R-21 int } \text{or}}{\frac{\text{R-15} + 5\text{ci}}{\text{std}}}$	$\frac{((R-21 int))}{R-13 + 7.5c}$ $\frac{std or}{R-20 + 3.8c}$ std or R-25

RDH

std

Wood-framed Walls: § C402.1.4- Assembly U-factor Based Method

2015 WSEC-C/SEC-C	2018 WSEC-C Group R	Proposed 2018 SEC-C
Group R, Wood framed and other: U-0.054	Reduced to U-0.051 for Group R. Achieved via:	U-0.051 required for both Group R and other occupancies
	 2x6 advanced framing (24" OC) with R-21 batt, OR 	
	- 2x8 standard framing with R-25 batt, OR	
	 2X6 standard framing with R-21 batt and continuous 1" mineral wool 	
	- 2x6 Flash and Batt?	

Air Barrier Testing

 Test standard reduced to <u>0.25</u> cfm/sf of envelope

- Passing test now <u>mandatory</u>
 - ...at the old std: 0.40 cfm/sf
 - (between 0.25 & 0.40 cfm, just fix what leaks you can)

1. DESIGN

THE 3 KEYS TO AIRTIGHT BUILDINGS

3. CONFIRM

Design

- \rightarrow Define/identify assemblies
- ightarrow Define air barrier boundary
- ightarrow Identify key interfaces
- \rightarrow Draw details (think in 3D)
- ightarrow Continuity

Build

- \rightarrow Pre-installation meetings
- \rightarrow Mock-ups
- \rightarrow Full time QC from GC

Confirm

- \rightarrow Visual review
- \rightarrow Qualitative testing
- \rightarrow Quantitative testing

Seattle (vs. WA): Heat pumps don't qualify for "semi-heated"

C402.1.1.2 Semi-heated buildings and spaces. The building envelope of semi*heated* buildings, or portions thereof, shall comply with the same requirements as that for conditioned spaces in Section C402, except as modified by this section. The total installed output capacity of mechanical space conditioning systems serving a *semi-heated* building or space shall comply with Section C202, except as modified by this section. (...)

Exception: Building or space may comply as *semi-heated* when served by ((one or more of)) the following system ((alternatives)) alternative:

1. Electric infrared heating equipment for localized heating applications, but not for general area heating, insulated in compliance with Section C402.2.8 and controlled by occupant sensing devices in compliance with Section C403.11.1.

((2. Heat pumps with cooling capacity permanently disabled, as pre-approved by the jurisdiction.))

Allowable glazing percentage

- Prescriptive path: 30% 35% wall area
 - Works fine for low-rise buildings
 - 40% if <u>half</u> of floor area in daylight zone
 - 40% with low U-value glazing
- Modeling path: Varies
 - 40% large office
 - 22% School
 - 7% grocery...
 - List in Appendix G Table G3.1.1-1
- Modeling "Other" (incl multifamily)
 - 40%...or proposed, if smaller

Fenestration U-values

- All frame mtrls use same values
 - WA: <u>U-0.38</u> for curtain wall, storefront, Class AW windows
 - WA: <u>U-0.30</u> for "all other"
 - Includes most typical windows
- Lower U-values in Seattle
 - Sea: <u>U-0.34</u> (vs. 0.38) for curtain wall, storefront, Class AW windows
 - Sea: <u>U-0.26</u> (vs. 0.30) for "all other"
 - Includes most typical windows
 - Sea: <u>U-0.28</u> for operable windows

RDH Fenestration U-value examples -Class AW, site built, and curtain wall

Category U-Factor Requirement		Example 1	Example 2		
Class AW, site built, and curtain wall	U-0.34/U-0.36 (Fixed/Operable)	"Ultra Thermal" Storefront (2 thermal breaks)	 Unitized SSG curtain wall Many stick-built curtain wall systems Conventional Window Wall? 		

FENESTRATION PRODUCT, SITE-BUILT. A fenestration designed to be made up of field-glazed or field-assembled units using specific factory cut or otherwise factory-formed framing and glazing units. Examples of site-built fenestration include storefront systems, curtain walls, and atrium roof systems.

products is expected.

RDH Fenestration U-value examples - Others

Category	U-Factor Requirement	Examples
Other Fenestration	U-0.26/U-0.28 (Fixed/Operable)	 Most Vinyl and fiberglass windows. Some vinyl windows with thinner glass or poorer thermal performance may not qualify

いていていたべく

C402.4.1.1.2 High-performance fenestration

All of the following requirements shall be met:

WA 0.34, Seattle 0.30 (operable 0.36)

- Class AW windows, fixed
- Vertical curtain walls
- Site-built fenestration, fixed;

WA 0.28, Seattle 0.22 (operable 0.24)

- "All other" vertical fenestration
 - Mostly punched windows

SHGC 0.35

adjusted for projection factor

High performance Fenestration U-value examples

Category	U-Factor Requirement	Example 1	Example 2
High-Performance Class AW	U-0.30/U-0.36 (Fixed/Operable)	2-pane stick built curtain wall with surface 4 coating. Reduced u-value from: U-0.32→ U-0.27.	 Fiberglass 2-pane window wall →U-0.24 "Thermally-Enhanced" window wall →U-0.30

Photo Credit: Cascadia Windows

High performance Fenestration U-value examples

Category	U-Factor Requirement	Example 1	Example 2
High Performance Others	U-0.22/U-0.24 (Fixed/Operable)	2-pane Vinyl Window with surface 4 coating. Reduced u-value from: U-0.26→ U-0.22.	2-pane to 3-pane vinyl window U-0.26→ U-0.16.

Fenestration Cost Anecdotes

 \rightarrow High rise apartment retrofit. Switching from 2-pane to 3-pane aluminum sliding glass door

- > 35% Cost increase
- Apartment tower window wall new construction. Upgrade from standard window wall to thermally improved aluminum window wall
 - > Approx. \$10/sq. ft cost increase (10%-15%)
- \rightarrow <\$7/ sq. ft. for interior surface low-e coating
- \rightarrow Punched vinyl windows

Size		Cost % (double)	Cost % (triple)
Small (<20sf)	< 4'x5'	Baseline	35%
Medium (20- 30SF)	4'x5' to 5'x5'	Baseline	35%
Large (30-40sf)	6'x5' to 8'x5'	35%	55%
Extra Large (>40SF)	>8'x5'	50%	75%

Thank You Walsh Construction!

Takeaways on glazing changes

- \rightarrow Code changes weed out worst performers
- \rightarrow High Performance Glazing Options:
 - ightarrow Double-paned fiberglass glazing systems
 - Thermally-improved products from aluminum glazing system manufacturers
 - ightarrow More interest in interior surface low-e coatings
 - Triple pane windows will start to be more common, but workarounds are available
- →In previous code cycles, overperforming windows were traded off against underperforming assemblies or thermal bridges to meet code. The math is now more difficult

Typical Underperforming Assemblies

- Mass Transfer Slabs
- Window Wall slab bypasses
- Concrete Curbs
- Spandrel panels
- -PTACs?
- Concrete balconies?

Maximum fenestration area, prescriptive

C402.4.1 Maximum area. The total building vertical fenestration area (not including opaque doors and opaque spandrel panels) shall not exceed ((30)) <u>35</u> percent of the total building gross *above-grade wall* area. The skylight area shall not exceed 5 percent of the total building gross roof area (skylight-to-roof ratio).

C402.4.1.1 Vertical fenestration maximum area with high performance alternates. For buildings that comply with Section C402.4.1.1.1 or C402.4.1.1.2, the total building vertical fenestration area is permitted to exceed ((30)) <u>35 percent</u> but shall not exceed 40 percent of the gross above grade wall area for the purpose of prescriptive compliance with Section C402.1.4.

NFRC: Manufactured Windows

- (Seattle) CPD numbers for manufactured windows required at permit submittal *only* if better than code *and* used for UA tradeoff or modeling
 - Otherwise, CPD number not required
- Values shown on the window stickers must be at least as good as the values shown on plans
- Never use the default table values unless there's no NFRC value

NFRC: Curtain Wall, Storefront...

- NFRC "CMA Bid Report" OK instead of "simulation report"
 - But not AAMA reports, mfr's simulation reports, or product literature
- NFRC Label Certificate *must* be available on site before the first stick of curtain wall goes up
 - ... Certificate values must at least equal Bid Report values

ID					Fe	nestrati	on Perfo	rmance e*	at
	Qty	Qty	Qty Total N Area N	Name	Name EnergyPlus Report File	Width	Height	U- factor	SHGC
		ft²	ft²		in.	in.	Btu/ hr•ft ² •°F	•	
P-PL-010	2	48.00	PL-2200 / PL-2210	www.nfrc.org/CMAST/pl2200-2210.txt	48.00	72.00	0.48	0.59	0.66
P-PL-010	5	88.89	PL-2200 / PL-2210	www.nfrc.org/CMAST/pl2200-2210.txt	40.00	64.00	0.50	0.56	0.64
P-PL-005	6	192.67	PL-3400 / PL-3401	www.nfrc.org/CMAST/pl3400-3401.txt	68.00	68.00	0.49	0.58	0.65
P-PL-005	3	54.00	PL-3400 / PL-3401	www.nfrc.org/CMAST/pl3400-3401.txt	72.00	36.00	0.51	0.55	0.62

PRODUCT LISTING:

NFRC Labeling 101

- → NFRC label certificate requires thermal simulation + physical testing. It's a timeconsuming process
- → Specify that an NFRC label certificate must be provided.
- → Be upfront in bid review meetings. A lot of manufacturers don't take the NFRC label certificate requirement seriously, let them know that Seattle does.
- → CMA Component Modeling Approach. Utilized by many large manufacturers so that they can quickly provide a CMA bid report. The CMA bid report is not a label certificate.

NON-RESIDENTIAL FENESTRATION CALCULATION REPORT / BID REPORT ACCORDING TO NFRC CMA PROCEDURES – NFRC STANDARD SIZE

NOTE: This is NOT an NFRC Label Certificate. This document can NOT be used in place of NFRC Label Certificate and can be used only for Bid and Design Purposes

PRODUCT LISTING:

				(\overline{O})	Performan	ce at NFRO Size	Standard
ID	Name	Framing Ref	Glazing Ref	Spacer Ref	U	SHGC	VT
			//)	Btu/h∙ft²∙F	-	-
P-KAW-42470	KAW 1600UT Sys 2 FGPP, 1" IG Optiwhite VE-2M #2, 90%AR, TGI Wave	FA-KAW-5329 8	GA-VIR-11242	SA-TCN-3958	0.31	0.38	0.65
P-KAW-41157	KAW AA250 Pair, Viracon 1" IG VE-2M #2, 90% AR, TGI Wave	FA-KAW-4234 8	GA-VIR-10603	SA-TCN-3958	0.43	0.25	0.43

Vestibules C402.5.7

- Vestibules required at all building <u>entrances</u> for public or occupants, except smaller than 3000 SF
- So not required at service doors, exit doors, small storefronts, outdoor dining
- Required for swing doors next to revolving doors
- Exception for air curtain!

Building A Net Zero Code

with a passive building baseline

Passive Conservation Strategies

Strategies

Quality, Health, Durability

PASSIVE BUILDING PRINCIPLES

Cost optimal sweet-spot for investment in conservation

- Window selections constrained based on comfort
- Air-tightness set based on PHIUS+ target (durability)

- 3-bdrm Single family, 2 story, 40 x 30 ft, WWR 15%, Seattle & Spokane
- PHIUS performance would still squeeze more out of space heating.

IECC 2018 vs PHIUS+ Comparison

Seattle (Climate Zone 4C) DOE MF Hi-Rise Case Study

		IECC 2018	PHIUS+ 2021	
	Walls	R 13+5	R 13+5	
	Roof	R 30	R 30	
	Slab	R 5 (15 at Perimeter)	R 5 (15 at Perimeter)	
~	Window U Value	U 0.45	U 0.3	
	Window SHGC	0.38 / 0.51	0.38 / 0.51	
\sim	Airtightness/Infiltration	3 ACH50	0.26 ACH50 (0.060 cfm50/ft2)	
	Ventilation Recovery Eff	0	60%	
	Ventilation Strategy	Exhaust Only	Balanced	
	Heating COP	3	3	
	Cooling COP	5	5	
	Water Heater EF	0.96	3.93	
	Appliances	Energy Star	Energy Star	
	Site EUI Before Renewables	19.47 kBTU/ft2.yr	13.9 kBTU/ft2.yr	
	Renewable Energy Production for Zero	469,658 kWh/yr	335,217.8 kWh/yr	

High Rise Residential Comparison, Climate Zone 4C, Seattle, WA

IECC 2018 vs PHIUS+ Comparison

Spokane (Climate Zone 5B) DOE MF Hi-Rise Case Study

		IECC 2018	PHIUS+ 2021	
	Walls	R 13+5	R 20+10	
\frown	Roof	R 30	R 60	
	Slab	R 5 (15 at Perimeter)	R 5 (15 at Perimeter)	
	Window U Value	U 0.45	U 0.3	
Wa Roc Slak Wir Wir Airt Ver Ver Hea Coc Wa App Site Rer	Window SHGC	0.38 / 0.51	0.38 / 0.51	
	Airtightness/Infiltration	3 ACH50	0.26 ACH50 (0.060 cfm50/ft2)	
	Ventilation Recovery Eff	0	75%	
W R SI W <t< td=""><td>Ventilation Strategy</td><td>Exhaust Only</td><td>Balanced</td></t<>	Ventilation Strategy	Exhaust Only	Balanced	
	Heating COP	3	3	
•	Cooling COP	R 13+5 R 20+10 R 30 R 60 R 5 (15 at Perimeter) R 5 (15 at Perimeter) U 0.45 U 0.3 0.38 / 0.51 0.38 / 0.51 3 ACH50 0.26 ACH50 (0.060 cfm50/ft2) 0 75% Exhaust Only Balanced 3 5 5 5 0.96 3.93 Inergy Star Energy Star Energy Star Energy Star Inergy Star 14.53 kBTU/ft2.yr ction for Zero 541,906 kWh/yr		
V	Water Heater EF	0.96	3.93	
	Appliances	Energy Star	Energy Star	
	Site EUI Before Renewables	22.47 kBTU/ft2.yr	14.53 kBTU/ft2.yr	
	Renewable Energy Production for Zero	541,906 kWh/yr	350,443 kWh/yr	

High Rise Residential Comparison, Climate Zone 5B, Spokane, WA

In 2015, PHFA (Pennsylvania Housing Finance Agency) wrote Passive Building certification into their LIHTC Application.

In 2015, the passive building projects came in +2% in <u>up-front</u> costs vs the other buildings. In 2016 In 2018 -2%

This sparked 15 additional states to include Passive building in their LIHTC application, and 16 additional in process.

https://passivehouseaccelerator.com/articles/2019-new-gravity-housing-conference-july-1st-2nd

Thermal bridging - Seattle

- Concrete balcony
 - Provide R-10 thermal break –stainless steel re-bar penetrations OK
 - <u>Or</u> component performance (target UA)
 - Seattle 2015 baseline is mass wall insulation value (U-0.057)
 - 2018 value will be *less* stringent (U-0.10)
- Fenestration frame
 - Align continuous insulation & thermal break within 2" of glass plane
 - Insulate "exposed" rough opening to R-3

C402.2.9 Concrete balconies

Above-grade concrete slabs that penetrate the *building thermal envelope*, including but not limited to decks and balconies, shall each include a minimum **R-10 thermal break**, aligned with the primary insulating layer in the adjoining wall assemblies. Stainless steel reinforcing bars are permitted to penetrate the thermal break.

If the component performance alternative in Section C402.1.5 is utilized and the thermal break required by this section is not provided where concrete slabs penetrate the building thermal envelope, the sectional area of the penetration shall be assigned the **default U-factors** from the "exposed concrete" row of Table A103.3.7.2. (U-0.741 for 8" slab)

Balconies & Exposed Slabs

Results from thermal modeling using calibrated finite element 3-dimensional software

R-values for 8'8" High Wall - No Balcony or slab (Center of Wall)

Insulation Strategy	Effective R-value
1" XPS (R-5) + R-12 batts/steel studs	R-14.3
2" XPS (R-10) + R-12 batts/steel studs	R-19.7
3" XPS (R-15) + R-12 batts/steel studs	R-24.7

R-values for 8'8" High Wall with Balcony Slab

Insulation Strategy	Effective		
	R-value		
1" XPS (R-5) + R-12 batts/steel studs	R-7.5 <mark>(-48%)</mark>		
2" XPS (R-10) + R-12 batts/steel studs	R-8.9 <mark>(-55%)</mark>		
3" XPS (R-15) + R-12 batts/steel studs	R-10.0 <mark>(-60%)</mark>		

Insulated Balcony Approaches

- ightarrow Steel bolt-on balconies
- ightarrow Structural thermal break
 - ightarrow How much extra do they cost anyway?
- ightarrow Custom Approaches
 - \rightarrow Supported by exterior columns with discrete attachments to slab edge

Image Credit: Shock

RDH

C402.2.10 Vertical fenestration intersection w/ opaque walls

- Where wall assemblies include continuous insulation, the exterior glazing layer of vertical fenestration and any required thermal break in the frame shall each be aligned within 2 inches (50 mm) of either face of the continuous insulation layer.
- Where wall assemblies do not include *continuous insulation*, the exterior glazing layer of *vertical fenestration* and any required thermal break in the frame shall each be aligned within the thickness of the *wall* insulation layer and not more than 2 inches (50 mm) from the exterior face of the outermost insulation layer.
- Where the exterior face of the *vertical fenestration* frame does not extend to the exterior face of the opaque wall rough opening, the exposed exterior portion of the rough opening shall be covered with either a material having an *R-value* not less than R-3, or with minimum 1.5-inch (38 mm) thickness wood.

Alignment of Glazing and Insulation

Aligned with insulation layer

$$\Psi = 0.013 \text{ BTU/hr.ft.F}$$

Aligned with concrete

 $\Psi = 0.241 \text{ BTU/hr.ft.F}$

Alignment of Glazing and Insulation

RDH

Windows Getting back to reality

Reality

U-0.35

U-0.47 (33% ↑)

Window Installation

"Over-insulated" Frames

Break Time!

HB 1112: Propellants & Polyurethane Foams

It's not the foam type... ...it's the blowing agent.

2020

- Rigid polyurethane
- Flexible polyurethane
- Integral skin polyurethane
- Polyolefin
- Phenolic insulation board

2021

- Polystyrene board
- Rigid polyurethane spray foam

Above dates are *install,* not permit date

Available Foam Products - low GWP

- ightarrow Spray Foam
 - $ightarrow \,$ Demilec HeatLok HFO Pro
 - \rightarrow BASF Spraytite Comfort
 - \rightarrow GacoOnePass
 - \rightarrow DuPont Froth-Pak is transitioning.
- \rightarrow XPS Foam Board

RDH

- ightarrow Owens Corning Foamular NGX
- \rightarrow DuPont Styrofoam
 - → Beginning in the 4th quarter of 2020, with a complete <u>Canadian</u> conversion ready by January 1, 2021, DuPont will transition its heritage Blue Styrofoam[™] Brand XPS Boardstock family of products to a new Grey, reduced GWP product line.

Seattle: Space heating

No electric resistance or fossil fuel combustion for space heating

(Usually means "Heat with heat pumps")

Exceptions allow <u>electric resistance heat</u> for:

- . Permits applied for before 1/1/22
- . <u>Dwelling units</u>: Max <u>750 W</u> per habitable room (1000 W for corner room)
- Other space types: Max 2.5 W/sf total installed heating (The "Passive House" rule)
- 4. Heat pump <u>auxiliary heat</u> in cold weather
- 5. Buildings smaller than 2,500 sf

So, how do you design envelopes to do this?

Seattle City Light

Electric Resistance Case Studies

- \rightarrow Typical Bedroom <750W.
- \rightarrow One large (6'x7') sliding glass door (40% glazing).
 - ightarrow Wood-Framed Construction with punched windows
 - \rightarrow Heat Capacity \approx 400W
 - ightarrow Steel-Framed Construction with unitized glazing
 - \rightarrow Heat Capacity \approx 475W

Takeaway: Large glazing percentages still possible for small rooms with approximately 10-12 feet of exterior wall

Electric Resistance Case Studies

- ightarrow Corner Living Room
- \rightarrow 24'x18' living room
- \rightarrow 35% glazing
 - \rightarrow Wood-Framed Construction with punched windows
 - \rightarrow Heat Capacity $\approx 1000W$
 - \rightarrow Steel-Framed Construction with unitized glazing
 - \rightarrow Heat Capacity \approx 1200W
 - $\rightarrow~$ Decrease glazing u-value to U-0.30 to reduce heating capacity to 1kW
- → Takeaway: It may be challenging to meet loads in corner units due primarily to higher enclosure areas. Close review required
- \rightarrow These are small capacities!

"Balanced ventilation" for R-2 dwelling units

- Deliver ventilation air directly to each "habitable space"
 - Living room, bedrooms
 - Trickle vents with bathroom exhaust won't work anymore
- Heat recovery required
 - w/ 60% sensible heat recovery effectiveness

- Individual HRVs in apartments?
 - Many small penetrations
- Rooftop units with vertical shafts?
 - Eats up some rentable floor area

- Floor-by-floor HRVs?
 - Each serving 6 8 units
 - Fewer penetrations

Pros and Cons

- Decentralized Maintenance
- More Penetrations
 - Reduce penetrations with recirculating range hoods and condensing dryers →balanced ventilation
- Less Area, ducts and equipment located in bulkheads

 \rightarrow 1 HRV unit per floor or stacked Roof Top Units

Pros and Cons

- Floor Area!
 - Shafts
- Rooftop Area!
 - Amenity and Solar Space
- Corridor Height
- Extra effort to maintain unit compartmentalization due to ductwork penetrations
 →fire dampers and duct routing
- Difficult to balance through varying wind and stack effect pressures →fancy controls (\$)
- Easier Maintenance
 - Affordable and student housing

 \rightarrow Spacing of intake and exhaust (WMC Section 401.4)

Adjacent building on same lot

 \rightarrow Spacing of intake and exhaust (WMC Section 401.4)

 \rightarrow Proximity to hazardous or noxious contaminant source

Exception: factory-built intake/exhaust combination termination fitting is used to separate the air streams

PTAC: recognize heat loss through wall

C402.1.4.2 Thermal resistance of mechanical equipment penetrations. When the total area of penetrations from through-wall mechanical equipment or equipment listed in Table C403.3.2(3) exceeds 1 percent of the opaque *above-grade wall* area, the mechanical equipment penetration area shall be calculated as a separate wall assembly with a default U-factor of 0.5...

Exception: Where mechanical equipment has been tested in accordance with *approved* testing standards...

Through-wall mechanical equip (PTAC/PTHP)

Table C402.1.4: Add new footnote k to above-grade wall types:

Walls, Above Grade						
	((U-0.104^d))	((U-0.078))				
	<u>U-0.057</u>	<u>U-0.057</u>				
Mass transfer deck	U-0.20	U-0.20				
slab edge ⁱ						
Slab penetrating	<u>U-0.10</u>	<u>U-0.10</u>				
thermal envelope						
<u>wall^h</u>						
Metal building <mark>k</mark>	U-0.052	U-0.052				
Steel framed ^k	U-0.055	U-0.055				
Wood framed	((U-0.05 4)) <u>U-</u>	U-0 051				
and other <mark>k</mark>	<u>0.051</u>	0-0.031				

k. Through-wall mechanical equipment subject to Section C402.1.4.2 shall be calculated at the U-factor defined in Section C402.1.4.2. The area-weighted U-Factor of the wall, including through-wall mechanical equipment, shall not exceed the value in the table

Renewable energy

- Seattle: **0.25 W/sf**, based on conditioned area of *all* floors
- WA: Appendix E was the 2015 Seattle renewable requirement - 0.07 W/sf
 - If any jurisdictions adopt it!
- Seattle C406.5 is also 0.25 W/sf

Construction & Inspections

Solar readiness

- Solar-ready zone 40% of *net* roof
- Seattle: now includes multifamily
- Solar zone: 4 psf add'l dead load
- Roof sleeve 2"@ 2,500 sf

How big is 0.25w/sf?

- Any size tower floor area
 - If all floors same size

Seattle City Light

• Area includes space between PV rows

Building Floors	Roof Area Required	
1	1.8%	
2	3.6%	
4	7.2%	
6	10.9%	
8	14.5%	
10	18.1%	
12	21.7%	
14	25.4%	
16	29.0%	
18	32.6%	
20	36.2%	
	Building Floors 1 2 4 6 8 10 12 14 15 16 18 20	Building FloorsRoof Area Required11.8%23.6%47.2%610.9%814.5%1018.1%1221.7%1425.4%1832.6%2036.2%

Solar PV and Roofing

\rightarrow Ballasted vs. Attached

- ightarrow Potential movement for ballasted systems
- ightarrow Weight
- \rightarrow Number of Penetrations
- ightarrow Roof access for servicing
- \rightarrow Roof replacement

\rightarrow Solar Readiness (Section C411)

- \rightarrow Structural Load Dead Load and Wind Load (C411.7)
- ightarrow Review roof warranty terms
- ightarrow Avoid roof ballast
- ightarrow Coverboard and insulation compressive strength
- ightarrow PV system vs roof membrane longevity

C406 Credits, Popularity Contest

Infiltration

Table C406.1

This option is not available to buildings subject to the prescriptive requirements of Section C403.3.5.
Buildings or building areas that are exempt from the thermal envelope requirements in accordance with Sections C402.1.1 and C402.1.2, do not qualify for this package.

Commercial Building Occupancy

Additional Efficiency Credits

Group E

NA

4.0

NA

NA

3.0

Ю

Group B

4.0

4.0

NA

NA

<u>3.0</u>

NA

Group M

NA

<u>4.0</u>

NA

NA

<u>3.0</u>

1.0

5.0

All Other

<u>4.0</u>

<u>4.0</u>

8.0

NA

<u>4.0</u>

1.0

5.0

2 Only

Image credit Ben Roush, FSI Engineers, Seattle

Code Section

Group R-1

4.0

4.0

4.0

 $7 \cap$

3.0

1.0

5.0

Group R-2

4.0

<u>4.0</u>

5.0

2 0

6.0

2.0

NΛ

Modeling – Welcome to ASHRAE Appendix G

- Carbon emissions compared with 2004 ASHRAE 90.1 standard
- Seattle: 10% *lower* than WA code
- BPF: Building Performance Factor

SEATTLE 10% lower				\bigcap					
Building Area Type	Multi family	Health care	Hotel	Office	Rest.	Retail	School	Ware house	Others
Building Performance Factor	0.56 <mark>0.50</mark>	0.54 <mark>0.49</mark>	0.64 <mark>0.58</mark>	0.54 <u>0.49</u>	0.73 <mark>0.66</mark>	0.47 <mark>0.42</mark>	0.36 <u>0.32</u>	0.48 <mark>0.43</mark>	0.54 <mark>0.49</mark>

Seattle City Light
Modeling: Limits on sub-standard envelope

- <u>WA</u>: Modeled envelope heat loss cannot be more than 20% worse than prescriptive
- <u>Seattle</u>: Modeled envelope heat loss cannot be more than <u>10%</u> worse than prescriptive

Additions C502

- Addition alone can comply
- <u>or</u> (existing + addition)
- Prescriptive projects also follow C502.2 rules
 - Fenestration area, skylight area, etc.
- Additions <u>over 500 sf</u> require C406 options

Alterations: Ground Rules C503

- You don't have to upgrade what you don't touch
 - ...if it met code back when it was built
 - ...there are a few exceptions
- But new stuff has to meet current code
- "Substantial Alterations" Comply with C503.8
- Don't harm anything protected by Landmarks
- Code official discretion if full compliance is physically or economically "impractical"
 - ...so come talk with us

Exceptions to envelope alteration rules:

These *don't* have to meet code:

- Storm windows
- Replacement glass
- Cavities not exposed
- Cavities exposed
 - if filled with insulation
- Roof recover (not replacement)
- Simple door replacement doesn't require vestibule
- Air leakage testing not required unless substantial alteration

Minimum Energy Performance for "Substantial Alterations" C503.8

- Once in a generation opportunity for "deep green" retrofit
- For major alterations (like complete gut-and-remodel) <u>close</u> <u>to</u> full compliance required
- "...substantially extend the useful physical or economic life of the building"
- Vacant for > 24 months
- Four compliance paths
- "Impracticality" clause

Seattle City Light

Substantial Alterations Exceptions & Options C503.8

- Exceptions
 - Building features protected by Landmarks
 - URM (only) projects
 - Recently-constructed vacant buildings
 - "Impractical"
- Options
 - **1**. Full prescriptive code compliance
 - 2. UxA 15% higher than code
 - 3. TBP 10% more energy use than allowed by code
 - 4. Target Performance Path option
- Similar rules for change of use & change of space conditioning

How should we build *today* for carbon-neutral city *tomorrow*?

- Buildings last a long time
- Envelope is really hard to upgrade...
- ...while other elements will be changed periodically

RDH

Prefabricated Passive House CLT Wall Panels

Prefabricated Passive House CLT Wall Panels

Prefabricated Passive House CLT Wall Panels

- \rightarrow ~60-storeys tall
- \rightarrow Balconies

RDH

- \rightarrow Target 50% WWR
- \rightarrow Pool amenity space
- \rightarrow Passive House
- Architectural significance

Duane Jonlin, FAIA duane.jonlin@seattle.gov 206-233-2781

Jason Acosta, PE jacosta@rdh.com 206-602-3571 Denali Jones , PE djones@rdh.com

Now a Few Words with

Customer Care & Energy Solutions (CCES)

Upcoming 2018 Code Update Deliveries

Webinar Topic	Delivery Date	Time
Cost Effective Code Compliance: HVAC	January 19 th	10:00 - Noon
Cost Effective Code Compliance: Building Envelope	January 26 th	10:00 - Noon
Cost Effective Code Compliance: Lighting	January 2 nd	10:00 - Noon
Cost Effective Code Compliance: Water Heating	February 9 th	10:00 - Noon

Today's slide deck and video recording can be found on <u>www.lightingdesignlab.com</u>

Click – Call – Connect

- Duane Jonlin, FAIA
 - 206-233-2781
 - Duane.Jonlin@seattle.gov

- Armando Berdiel Chavez, M.Eng., LC.
 - 206-475-2722
 - armando.berdiel@seattle.gov

Please take the online survey once you exit the webinar

We'll SEE you on the next call... ©

