

slido

What professions do we have joining us today?

[EXP-2]

AND THE VOLUME OF WATER IN THE HW

66.8 kBTU/HR OF PRIMARY HEAT CAPACITY 80 GALLONS OF SWING TANK VOLUME 4.7 kW SWING TANK RESISTANCE ELEMENT

LEGEND					
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION		
	PUMP	Ŧ	PIPE-T		
丛	MIXING VALVE	3-	T&P RELIEF VALVE		
PMP-#	EQUIPMENT TAG	\$ \$	MANUAL AND AUTOMATIC AIR BLEED		
T	TEMPERATURE SENSOR	1	PIPE UNION		
	FLOW METER	-	PIPE FLOW DIRECTION		
1001	BALL VALVE	3"	PIPE SIZE		
\bowtie	BALANCING VALVE		CW PIPING		
M	SPRING CHECK VALVE		HW PIPING		
Y	INLINE Y-STRAINER		HWC PIPING		

"STRUCTURE PROVIDE ADDITIONAL HEADER TO MULTIPLE HPWHS CLEARANCE FOR LOCATIONS WITH SNOW FALL PROVIDE VALVES FOR BACKFLUSHING	LEARANCE FOR LOCATIONS WITH SNOW FALL PROVIDE VALVES F BACKFLUSHING	ESSURE SHALL E WITH THE ECIFICATION. STRAINER FOR N THE SUPPLY PLE HPWHs
1.1 HPWH EQUIPMENT DETAIL NTS		

KEY QUESTIONS

- What policy drivers are pushing for adoption?
- What makes a **good CHPWH candidate?**
- What are the **key** components of **CHPWH systems?**

slido

Introduction Survey

PRODUCT TYPES: LEARN THE LANGUAGE

- Compressor, tank, & controls in a single package.
- Typically small residential product.

- Compressor, and tank in two separate packages
- Both residential and commercial products available

RESIDENTIAL vs. COMMERCIAL SYSTEMS

A **CHPWH system** serves more than 4 dwelling units or commercial loads requiring ≥ **120 gallons** of storage volume and/or >6 kW of input power.

COMMERCIAL **HPWH SYSTEMS**

Residential INTEGRATED HPWH

EXAMPLES OF CHPWH SYSTEMS

Small Commercial System

(closet installation serving 5 apts)

Large Commercial System

(basement installation serving 250 apts)

Multiple Commercial Systems

(residential equipment serving 4-5 apts)

SMALL COMMERCIAL SYSTEM

LARGE COMMERCIAL SYSTEM

- Commercial equipment; engineered system
- 200 units
- Dedicated heating system:
 - Single pass primary HPWH
 - o Multi pass temperature maintenance system

MULTIPLE COMMERCIAL SYSTEMS

- Smaller residential equipment used in a commercial application
- 100 units
- Multiple central/commercial HPWH systems

WHY CHPWH?

- Global, federal & state policies
- Codes & standards
- Capture incentives & rebates
- Lower operating costs
- Energy efficiency measures
- Societal changes

SEATTLE COMMERCIAL ENERGY CODE

C404.2.3

Group R-1 and R-2* occupancies w/central service water heating systems.

Service hot water shall be provided by an **air-source heat pump water heating system**, not fossil fuel or electric resistance.

*R-1 and R-2: Multifamily greater than 3 stories; any hotel/motel

ELIZABETH JAMES

Elizabeth James House

70% Reduction in DHW Energy

- Senior/low income
- 60 apartments
- 4 Sanden CO₂ HPs
- ZERO GHG emissions

WHY CHPWH?

https://localenergycodes.com/content/map

LOWER FIRST COSTS

965 Weeks Street, East Palo Alto, CA

Affordable apartment homes that include at least 30% extremely low-income units and 50% low-income units

FOSSIL GAS

4 hot water plants serve 4 buildings

- Plants contain gas water heaters with integral storage tanks
- Storage tanks on roof
- Outdoor unit on roof or in mechanical room

Solar thermal collector w/ PV system

Solar PV system

Equipment cost: \$192,000

Utility connection cost: \$84,800

Total cost: \$276,800

Equipment cost: \$169,262

Utility connection cost: \$27,000

Total cost: \$196,262

OPERATING COST COMPARISON

FOSSIL GAS SYSTEM

VS

AIR TO WATER CO, HPWH

Gas usage/year: **18,722 therms**

Average estimated cost/therm: \$1.75

Estimated gas cost/year: \$32,829

(no load shifting)

Electricity usage/year: 130,154 kWh

Time-of-use rate (peak, partial peak, off-peak)

Estimated electric cost/year: \$33,065

(load shifting)

Electricity usage/year: 130,154 kWh

Time-of-use rate (peak, partial peak, off-peak)

Estimated electric cost/year: \$31,672

WHY CHPWH: TOU RATES & GRID FLEXIBILITY

WHY CHPWH?

 DHW represents 25% of annual building use CHPWH systems cut energy usage down by 3x

slido

What aspects of CHPWH systems are most appealing to you?

FOUR **CHPWH SYSTEM COMPONENTS**

- Primary heat pump water heater (HPWH)
- Primary HW storage tank
- Temperature maintenance system
- Controls

PRIMARY HEAT PUMP

HOW **HEAT PUMPS** WORK

Air Source Heat Pump with Storage Tank

Moving HEAT (not making heat)

TWO TYPES OF **HEATING CYCLES**

AVAILABLE PRODUCTS

SanCO₂ (1.25 ton)

Mitsubishi (10 ton)

Multi-Pass Unitary Residential/Small Commercial R-134a Single-Pass CO₂/R-744 Single- or Multi-Pass R-134a

HPWH CONSIDERATIONS

Rheem (> 1 ton)

Nyle

(10 - 30 ton)

- Air source / heat source
- Heating cycle (single pass / multipass)
- Electrical connection
- Water connections (freeze protection required?)
- Condensate management
- Maintenance and access
- Sound level, noise considerations

PRIMARY STORAGE TANK(S)

A BATTERY BANK

HW STORAGE **CONSIDERATIONS**

- Physical space, room & door size
- Vertical is better than horizontal
- Multiple tanks, series or parallel?
- Height of control sensor(s)
- Pipe connections, size & location
- Insulation level
- Thermal isolation
- Maintenance & access

TEMPERATURE MAINTENANCE SYSTEM

TEMPERATURE MAINTENANCE SYSTEM VALUE

- HPs are very efficient at making cold water hot
- HW circulates through the distribution piping
- Water returns from the building slightly cooled
- Return water causes mixing & destratification in the storage tank
- HPs are not very good at making warm water hot

TWO RELIABLE TEMPERATURE MAINTENANCE REHEAT STRATEGIES

TEMPERATURE MAINTENANCE: **HW CIRCULATION**

A SMALL CONSTANT LOAD THAT **ADDS UP**

OPTIONS FOR REDUCING THE **TEMPERATURE MAINTENANCE LOSSES**

GOOD EXAMPLE: PIPE CLAMP ACTS AS A THERMAL BREAK

OPTIONS FOR REDUCING THE **TEMPERATURE MAINTENANCE LOSSES**

GOOD

BAD

HIGH EFFICIENCY PLUMBING DISTRIBUTION SYSTEMS

APPENDIX M SIZING (UPC 2018)

- Reduces pipe size in building
- Reduces volume of water & associated osses
 - Jurisdiction dependent in CA

Sizing Method	Flowrate (GPM)	CW main
Appendix A	260	4"
Appendix A + C	205	3.5"
Appendix M	54	2"

APPENDIX M PEAK WATER DEMAND CALCULATOR

M 101.1 Applicability. This appendix provides a method for

M 102.1 Water-Conserving Fixtures. Plumbing fixtures,

FOTURE AND APPLIANCE	FLOW RATE (gallons per minute)	
Bar Sink	1.5	
Buthtub	5.5	
Bidet	2,0	
Clothes Washer*	3.5	
Combination Bath/Shower	5.5	
Dishwasher*	13	
Kitchen Faucet	2.2	
Laundry Faucet (with acrator)	2.0	
Lavatory Faucet	1.5	
Shower, per head	VV / 2.0 /	
Water Closet, 1.28 GPF Gravity Tank	3.0	
For SI units: 1 gallon per minute = 0.06 L/s		

ow rate for the building supply and principal branches an sers shall be determined by the IAPMO Water Deman

as provided in Section M 102.0 for estimating the deman load for single- and multi-family dwellings, the size of eac ection A 107.0. Appendix I, Figure 3 and Figure 4 shall ermitted when sizing PEX systems.

M102.7.1 Minimum Fixture Branch Size. The

	[A] FIXTURE	[B] ENTER NUMBER OF FIXTURES	PROBABILITY OF USE (%)	(D) ENTER FIXTURE FLOW RATE (GPM)	(E) MAXIMUM RECOMMENDED TURE FLOW RATE (GPM
1	Bar Sink	0	2.0	1.5	1.5
2	Bathtub	0	1.0	5.5	5.5
3	Bidet	0	1.0	2.0	2.0
4	Clothes Washer	I.	5.5	3.5	3.5
5	Combination Bath/Shower	1	5.5	5.5	5.5
6	Dishwasher	1	0.5	1.3	1.3
7	Kitchen Faucet	1	2.0	2.2	2.2
8	Laundry Faucet	0	2.0	2.0	2.0
9	Lavatory Faucet	1	2.0	1.5	1.5
10	Shower, per head	0	4.5	2.0	2.0
11	Water Closet, 1.28 GPF Gravity Tank	1.	1.0	3.0	3.0
12	Other Fixture 1	01/	0.0	A -0.0	6.0
13	Other Fixture 2	0	0.0	0.0	6.0
14	Other Fixture 3	0 0	0.0	0.0	6.0
Tota	l Number of Fixtures	6		RESET	RUN WATER DEMAND
99th Percentile Demand Flow = 8.5 GPM		8.5 GPM		HESET	CALCULATOR

Example 1: Indoor Water Use Only – Use the information given below to find the pipe size for idential building with six indoor fixtures as shown in Figure 1 [Pipe Section 4].

Type of pipe material:	L-copper
Fixture number/type:	1 combination bath/shower
	I lavatory faucet
	I WC
N N	
TUN	
LAVATORY	DISHMASHER
WATER	KITCHEN
CLOSET	SNK

specifies a lower flow rate for the fixture. Column [E] estab-lishes the upper limits for the flow rates entered into Column [D]. Clicking the Run Water Demand Calculator button gives

THERMOSTATIC MIXING VALVE **SIZING**

Requires **accurate sizing** for DHW load. Response time is **essential**.

slido

There will be A LOT more on this next time, but what questions do you have now?

CONTROLS OPTIONS

Equipment communicates through **CONTROLS** to fulfill design intent.

CHPWH CONTROL SYSTEM: INTERNAL

INTERNAL

CHPWH CONTROL SYSTEM: THIRD PARTY

THIRD PARTY

slido

Take a moment to reflect!

RECAP: CHPWH COMPONENTS: COLMAC Heat pump Primary storage tank Temperature maintenance system Controls

slido

What questions remain for you? Write them here so we know to tackle them next time!

NEXT **TIME**

- HW System Designs
- Sizing
- Refrigerant Types & Equipment Selection
- Case Studies

UPCOMING TRAINING & RESOURCES

Seattle City Light, in collaboration w/ the Lighting Design Lab 2022

(https://www.lightingdesignlab.com/education)

CHPWH: Engineering Deep Dive (Pt 2)

January 18th, 10AM-12PM

CHPWH: Design, Maintenance & Operation

January 25th, February 1st, 8th, 15th 10AM - 12PM

To host a training session, or for more information, contact:

Thomasena Philen at: TPHILEN@DRINTL.COM

HOW DOES IT **COMPARE?**

TEMPERATURE MAINTENANCE SYSTEM

