

Who We Work WithImage: State of the s

•6

More than 30 years in the lighting industry as an architectural lighting designer, instructor, daylighting and sustainability specialist, lighting control system consultant, and theatrical designer.

Has taught and consulted on sustainability issues, lighting, and daylighting for the Lighting Design Lab and University of Washington Architecture Department

Selected Projects

- King Abdullah University of Science and Technology Masdar Headquarters
- Pearl River Tower Canyon Ranch Spa Club
- Amgen Helix Campus
- Reebok World Headquarters Reno Sparks Convention Center
- Pacific Place Retail Center
- Ala Moana Retail Center
- REI Denver Flagship Store
- Boeing Commercial Airplanes Offices
- Real Networks Headquarters
- Tommy Bahama Headquarters
- Microsoft B16/17
- San Francisco PUC Headquarters
- acted Awards Amgen Helix Pedestrian Bridge Caryon Ranch Spa Club Hanard University 60 Odord King Street Station Ughting Design Lab Methodat Hospital Research Inistitute Microsoft Brid/To Den Cambridge Center Pacific Piace Retall Center Reab Kwolrd Haadquarters Reab Systak Comention Center Reab Nation State Center State Center Nation State Center Natio State C

Selected Awards

- AIA COTE Top 10
- REI Flagship Store Denver
 King Abdulla University of Science and Technology
 San Francisco PUC Headquarters
- San Francisco PUC Her
 Manitoba Hydro Place

•9

Learning Objectives

- Understand and be able to apply common control strategies
- Understand and be able to apply typical controls hardware
- Understand how networked control devices may be configured
- Understand the essentials of system startup for networked systems.
 - Pairing devices
 - Setting high trim
 - Setting timeouts
 - Setting daylight zones
 - Gaining comfort with hardware and software

🖫 lighting design lab

Why use advanced lighting controls?

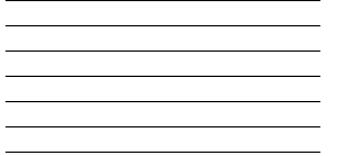
- Flexibility
- Productivity
- User Satisfaction
- . Aesthetics
- Maintenance
- LEED / WELL / LBC
- Energy Savings
- Energy Codes

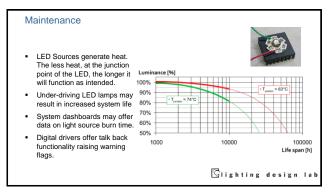
Glighting design lab

•11

•12

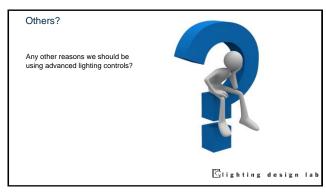
Productivity

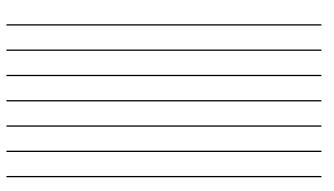

Reducing glare

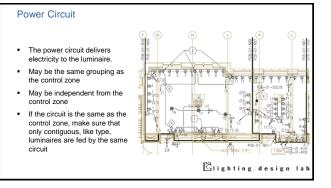

User Satisfaction

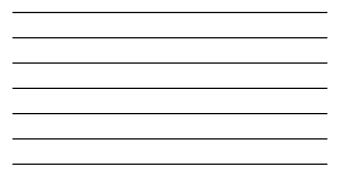
- Personal Control
- We all like to have control over our work environment.
- Frequently users will dim to a lower lighting level than current practice recommends when given the option.

•14

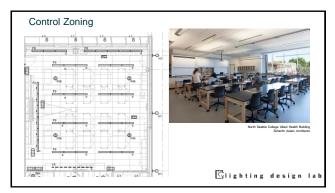


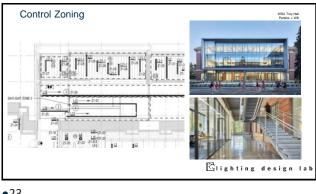

		APPENDIX A	LIGHTING CO	INTROL SAVE	NGS VALUES:			
E O						criptive Saving		
Energy Savings			\vdash		Wh seved	Anipuve saving	\$50 / con	trolled fixture
5, 5		Space Use Type	Deplight Control Mubi-step or Continuous Dimming	Occupancy Sensor mounted anywhere	Occupancy Sensor w/ Daylight Control	Non-QPL Listed Advanced Lighting Controls	QPL Listed Advanced Lighting Controls Networked	QPL Listed Advanced Lighting Controls LLLC
		Assembly	30%	25%	25%	25%	25%	25%
 Most significant control 		Break Boom	30%	25%	42%	40%	42%	50%
		Classroom	30%	25%	25%	25%	25%	25%
strategies consist of dimming to		Computer Room	30%	25%	42%	40%	42%	50%
a desired light level or turning		Conference	30%	25%	42%	40%	42%	50%
		Dining Germaskure	30%	15%	42%	40%	47%	50%
lights off when un-needed.		Hallmay	30%	50%	47%	475	475	50%
- Dimmined ED is seen when		Hospital Room	30%	25%	42%	40%	42%	50%
 Dimming LED is reasonably 		Industrial	30%	25%	42%	40%	42%	50%
close to a linear relationship		Kitchan Library	30%	25%	42%	40%	42%	50%
ciuse tu a intear relationship		Lobby	30%	25%	425	40%	475	50%
between output and energy consumed.		Lodging (Guest Rooms)	30%	25%	42%	40%	42%	50%
consumeu.		Open Office	30%	15%	42%	40%	42%	50%
 The potential savings ranges 		Parking Garage	30%	25%	42%	40%	42%	50%
have been well verified over a		Private Office	30%	15%	42%	40%	42%	50%
nave been wen venned over a		Process	30%	25%	42%	40%	42%	50%
large project base.		Public Assembly	30%	25%	42%	40%	42%	50%
		Restroom	10%	50%	52%	40%	42%	50%
		Retail Stairs	10% 10%	25%	42%	40%	42%	50%
		Storuge	10%	50%	325	40%	475	10%
		Technical Area	30%	25%	25%	25%	25%	25%
		Warehouse	30%	60%	62%	402%	42%	50%
	Courtesy: BPA	Other	30%	40%	42%	40%	42%	50%


Energy Codes


- Meeting an energy code should be considered a fundamental baseline.
- Meeting an energy code does not necessarily result in a good lighting control system.
- We'll review more on codes later.



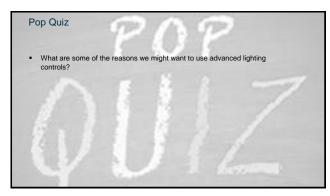


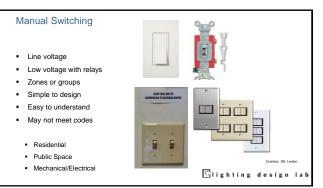


- A Control Zone is a logical grouping of luminaires that are controlled together.
- May be the same grouping as the power circuit
- May be independent from the power circuit
- Generally, the more control zones, the more flexible the system will be.
- Poor zoning is among the most common errors in controls.

•21

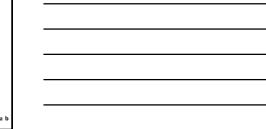




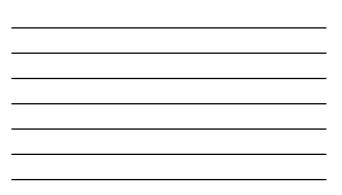


Typical Control Strategies

- Manual Switching
- Manual Dimming
- Scene / Preset Control
- Occupancy Sensing
- Vacancy Sensing
- Daylight Harvesting
- Task Tuning
- Time Scheduling
- Astronomic Scheduling



Clighting design la



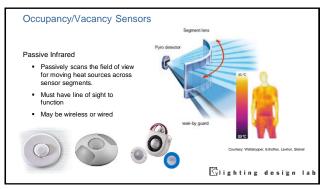
Occupancy Sensing

- Automatically turn lights on or off depending on occupancy
- May have some residual angst over older systems
- Supplanted by vacancy sensors in many cases.
- Public spaces
- Corridors / Stairwells
- Toilet rooms
- Warehouses
- Parking garages
- Site lighting

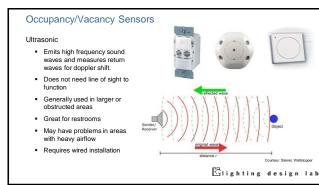
Clighting design lab

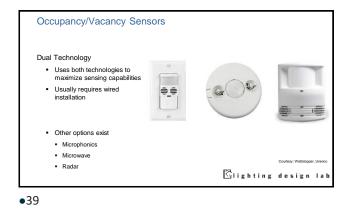
•35

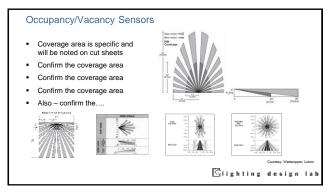
Vacancy Sensing

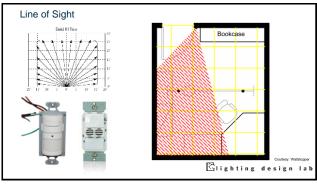

- Automatically turn lights off when no occupants are present
- Requires manual touch to turn on.
 May have some residual angst over older systems.

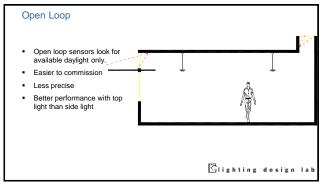
Users may require some training.

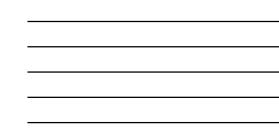

- Offices
- Classrooms
- Storage

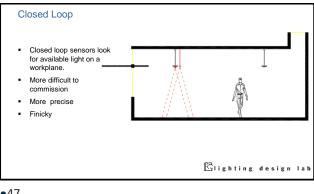









<section-header><list-item><list-item><list-item><list-item><list-item> Dypight Harvesting 1. uninaires are governed by use dayight availability. 0. Sorting availability.



- Setting a high trim tuned to deliver the target illuminance level.
- Can reduce glare
- Can balance brightness Can save as much as 20-30% .
- of the energy in a typical system.

- Education
- Public Spaces
- Circulation
- Warehouse / Industrial

•48

Clighting design lab

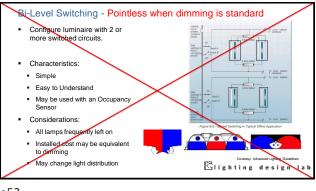
Bulitt Cer

Clighting design lat

Time Scheduling

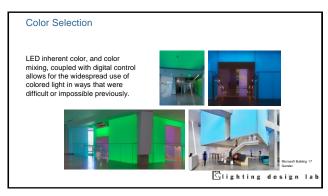
- Lighting is governed by time of day events rather than occupancy or vacancy sensing.
- Multiple calendars required for effective use.
- Public Spaces
- Circulation
- Retail
- Areas in which OS/VS would pose difficulty

Clighting design la


Clighting design lat

•50

Adaptive Compensation



Newer Controls Strategies

- Color selection
- Tunable White
- Circadian Lighting
- Dim to WarmArchitainment
-
- Based on the properties of LED light sources

Children's Hospital

Tunable White

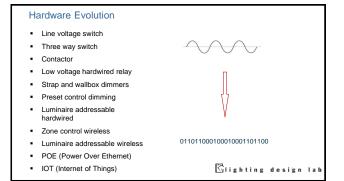
- Specific color tuning adjusting the correlated color temperature / SPD along the black body radiator curve.
- Meant to affect mood or alertness.
- Circadian lighting.Aesthetic reasons.



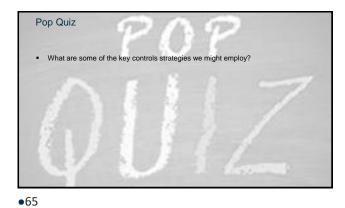
•56

•57



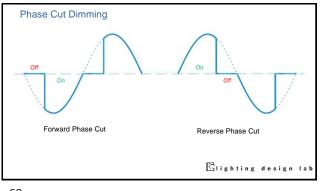

Hardware Evolution

- Line voltage switch
- Three way switch
- Contactor
- Low voltage hardwired relay
- Strap and wallbox dimmers
- Preset control dimming
- Luminaire addressable hardwired
- Zone control wireless
- Luminaire addressable wireless
- POE (Power Over Ethernet)
- IOT (Internet of Things)

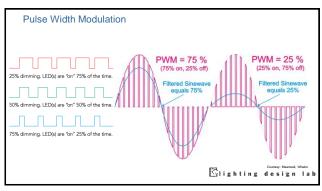

Clighting design lab

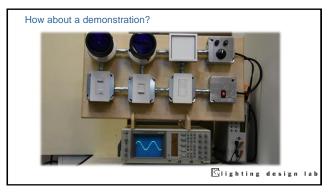
•62

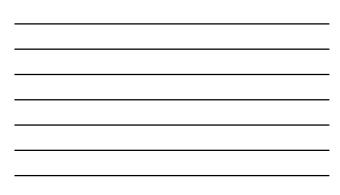
			Tvi	nical Spa	ce Strate	gy Option	s		-				
Lighting Controls													
Space Type	Manual Switch	Manual Dimmer	Occupancy	Vacancy	Daylight	Task Tuning	Time Clock	Astro. Time Clock	Preset Scene	Tunable White	RGB		
Café													
Big Box Retail													
Board Room													
Boutique Retail		1											
Cafeteria													
Circulation													
Classroom		1											
Conference													
Department Store													
Exam Room													
Fine Dining													
Gymnasium													
Industrial													

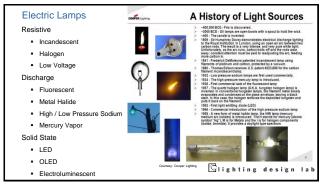

Dimming 101

- LED light sources are inherently dimmable when provided with dimming drivers.
- Almost all quality LED product is dimmable by at least a 0-10v control signal.
- OK we're going to dim our light sources....what are some of the key ways we make that happen?

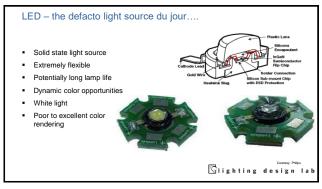

Glighting design lab



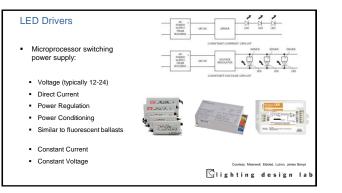

•68

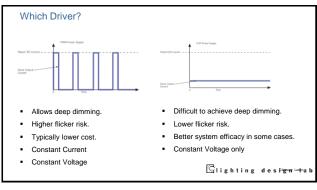


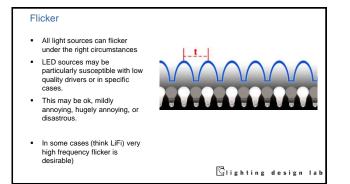
•69

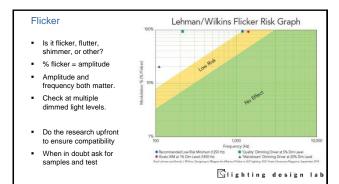


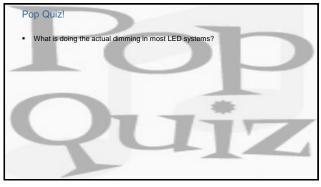
•72

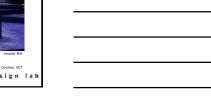


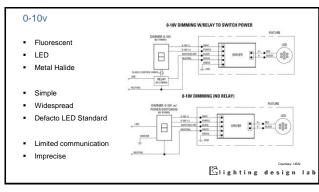




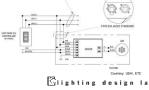


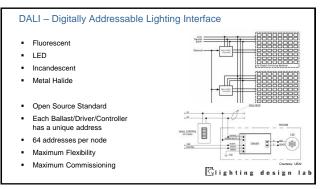


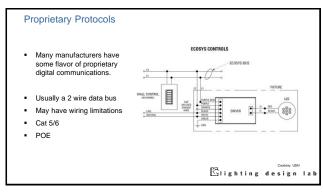

•80



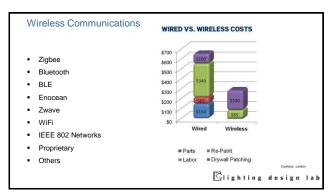
•81



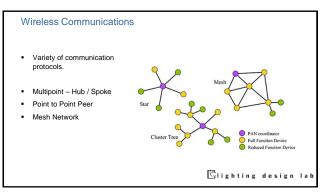

DMX-512 – Digital Multiplex 512 Channels



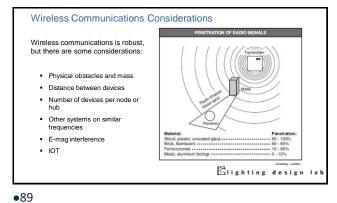
- Color tuning
- Theatrical lighting standard
- Flexible / Complicated
- Reasonably precise 256 steps
- Bi-directional communication
- Distance limitations
- Each universe limited to 512 zones
- Various flavors



DARK BUS - XLR CABLE OF SHIELDED DATA CABLE

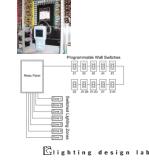


•86



30

Low Voltage Relay Systems


Characteristics:

- On/off switching control only
- May be hardwired analog or digital
- Generally includes scheduling capability
- Will accept input from occupancy sensors, photo-controllers, and other systems

Considerations:

- May require considerable commissioning
- Older method of whole building control
- · Home run circuiting required for each zone Digital control is simpler than hard wired
- Still relevant?

ounesy: GE

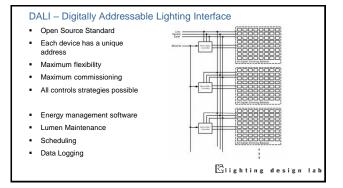
Clighting design lat

Preset Architectural Dimming Systems

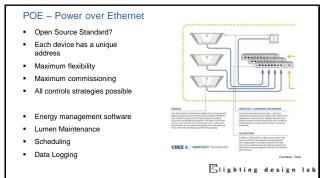

Characteristics:

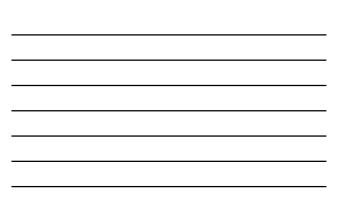
- Dimmers located in remote cabinets
- Advanced programming and playback
- Will include scheduling capability

Will accept input from occupancy sensors, photo-controllers, and other systems


Considerations:

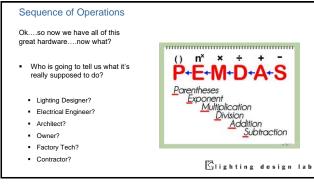
- Dimming modules may be load type specific
- May require coordination with AV systems Likely to require digital protocols like DMX-512
- Still relevant?




Luminaire Level Lighting Controls

- Wrap all of the sensors and most of the logic into the luminaire itself
- Simple to specify and installWill require commissioning to
- function most effectively.May be capable of all control strategies
- May be capable of only OS/VS and Daylight harvesting
- Smarter systems will be more capable

•96



Networked Lighting Controls Today

- Distributed
- Wireless
- More Capable
- More Complex
- Less Complicated
- Less Costly
- Easier to Install / Commission
- Compatible
- Integrated
- Better!

Sequence of Operations

Ok....so now we have all of this great hardware....now what?

- Who is going to tell us what it's really supposed to do?
 - Lighting Designer? May not be contracted to design controls...
 - Electrical Engineer?
 - Architect?
 - Owner?
 - Factory Tech?
 - Contractor?

🖾 lighting design lab

•101

Sequence of Operations

Ok....so now we have all of this great hardware....now what?

- Who is going to tell us what it's really supposed to do?
 - Lighting Designer? May not be contracted to design controls...
 - Electrical Engineer? May not really know what the plan was...
 - Architect?
 - Owner?
 - Factory Tech?
 - Contractor?

Cighting design lab

•102

Sequence of Operations

Whoever winds up doing it....a sequence of operations is required to tell the contractor, startup technician, and commissioning agent how the system is supposed to function.

- · What are the time and astronomic schedules
- Which sensors are vacancy and which are occupancy?
- What is the vacancy timeout?
- What are the target light levels for task tuning?
- What switches or dimmers are tied to which zones?
- What zones are included in each preset and at what levels?
- What are the daylight zone dimming thresholds?
- Are there any specialty programming tasks like partition controls?

Glighting design lab

Sequence of Operations

There are lots of ways that SOO information may be conveyed.

- Basic Matrix
- Narrative
- Detailed Matrix
- Panel Schedule
- Dimming Schedule
- Most manufacturers have their own system

Clighting design la

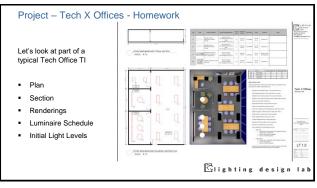
•104

Sequence of Operations

Typical private office 1. All general I

J.

3.

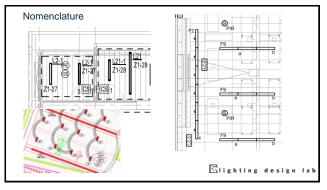

- All general lighting will be programmed to automatically turn "ON" as the user enters the room through the Occupancy Sensor initial light level will be 50% of light output,
- Four button switch with off and raise/lower function override switch located at door will override current light setting as long as the override light level isn't above the set point for the daylight sensor during daytime hours.
 - a. Pressing Button 1 will turn all fixtures to 50% light output.
 - Pressing Button 2 will turn all fixtures to 70% light output.
 Pressing Button 3 will turn all fixtures to 90% light output.
 - Pressing Button 4 will turn all fixtures to 100% light output.
 - e. Pressing Button 5 will turn all lighting fixtures "OFF".
 - Photo sensor will continuously dim the light fature up/down depending on the amount of daylight present. Daylight sensor to be calibrated to provide an average of (+/-) 50 footcandles measured at work surface (30° above finished floor).
- floor). 4. When the user leaves the room, the lights will automatically turn "OFF" after a 15 minute delay (from unoccupied signal).

Clighting design lab

•105

	Seq	uence of	Operatio	ns																
	Project X Sequence of Operations Matrix																			
Roon Narther	Centrel Zene	Space Type (Use	Lighting Type	Turget Light Level	ICI	Manual Switch	Dimmer Switch	Preset Station	Time Clock	Antroneeric Time Clock	Occupanty Senser	Vacancy Sensor	Occupanty/Necancy Time Out	Daylight Dimmining	Daylight Threshold	Task Turing	Sile Occupancy Sensor	Site Photo Control	Specially See Note	Typical Sequence of Operations
	•		Linear Indirect / Direct	30															1	1
1	•	Conference Room	North Wall Wash	NA	1			1					30							
	0		South Wall Wash	NA																
2	•	Janitor	Industrial	20									10							
	zt	Private Office	Recessed Traffer	30			1								200%					2
,	12	Private Office	Art Accent	NA			2						1 "							
	z2-12		Indirect Direct - Daylight	30									15		200%					з
4	z2-13	Open Office	Indirect - Direct Inboard	30				1.					1		200%					
	z2-14		Circulation	10				1							150%					
											Ē	<u></u> ii	g h	ti	ng	d	esi	ig n	1	a b



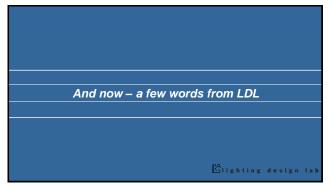




•108

	Droiog	t Tash V	Offices		Roo	m		Target l	ight Level.	Initial Light Level
	FIUJEC	t – Tech X	Unices	101	0	pen Office			25	35
				102	Pri	Private Office			30	45
	 Initia 	I Light Levels	103	Te	am Room			25	30	
	Lum	inaire Schedule	104	C	onference			40	55	
	- Luin									
Туре	Image	Product Description	Basis of Design Specifcation	Input watts	Source and Output	Control Gear	Finis	. .	founting	Notes
ы		RECESSED 2X4 HIGH PERFORMANCE LENSED TROFFER	MANUFACTURER X HIGH PERFORMANCE TROFFER SERIES PART NUMBER XXX-30X-30X	42	LED 3500K 5000 LM	10% DIMMING	STD. P ARCI		CESSED ACT	
12		RECESSED 2X2 HIGH PERFORMANCE LENSED TROFFER	MANUFACTURER X HIGH PERFORMANCE TROFFER SERES PART NUMBER XXX-30X-30X	42	LED 3500K 5000 LM	10% DIMMING	STD. P ARCI		CESSED ACT	
u		SUSPENDED DECORATIVE PENDANT LUMINAIRE; 36" NOH. LUMINOUS RING	MANUFACTURER X GLOWY RING SERIES PART NUMBER X00-300X-300X	70	LED 3500K 5500 LM	5% DIMMING	STD. P ARCI		RAFT CABLE JUSPENSION	
14		RECESSED LINEAR WALL WASH LUMINAIRE	MANUFACTURER X WALL WASH SERIES PART NUMBER XXX-3XX-3XX	S / LF	LED 3500K 350 LM / LF	5% DIMMING	STD. P ARCH		CESSED ACT	
	-						••	· • · ·		

•110


				Project X S	equence	of Ope	rations	Matrix	- Home	rwork				_						_
Room Number	Control Dates	Name Type (Une	nage granded	Tangat Light Land	res	Menual Settch	Disease Setten	Preset Station	Terra Check	Automonic Time Clock	Occupancy Tensor	Vecancy Benaue	OS / VS Tiese Out	Busesseeg aduleo	Deployee Maximum	Tank Turing	Site Occupancy Sensor	Sile Photo Central	Specially Mate	Typical Note
_				-								_	_							
_				-		-	F	_	_	-		_	_	_		-	-	_	_	F
_								_	_	_		_	_	_				_	_	
_												_								
_				-								_	_							
_																				

•111

Upcoming LDL Onlin	ne Events									
LDL Course	Delivery Date	Time								
Fundamentals of NLC (Side B – Practical Application)	July 15	10:00 - Noon								
The Lighting Design Process	July 28	10:00 - Noon								
Audit and Retrofit Techniques	August 11	10:00 - Noon								
Introduction to Codes and Standards	August 25	10:00 - Noon								
Promoting Energy Efficient Lighting Systems	September 8	10:00 – Noon								
Today's slide deck and previous online courses can be found on our website										
L	Glightin	g design la								

•114

