

Lighting Design Lab: Ecotope's Design For Off™

Presented by Jon Heller, Ecotope

October 5, 2023

Webinar Procedures

- All attendees are on mute
- Submit questions in Questions tab at any time
- The webinar is being recorded
- Please take the after-class survey!

Click this arrow if you don't see the GoTo toolbar. It might be on your other screen, if you have 2 monitors!

Design for Off[™]

Jon Heller, PE, LEED AP President

October 5, 2023

Purpose

+ Leading transformation of the building industry to energy efficient, carbon neutral buildings

Before and after air conditioning

The Arctic Building

The Norton Building

Perimeter offices

ЕСОТОРЕ

SeaFirst Building

+ 1969 + EUI ~ 100-150 kBtu/sf-yr

Seattle City Hall

+ 2003 + EUI ~ 75 kBtu/sf-yr

Alley 24

+ 2007 + EUI ~ 50 kBtu/sf-yr

The Bullitt Center

+ 2013 + EUI ~ 16 kBtu/sf-yr

The Globe Building

+ 1891 + EUI ~ 30 kBtu/sf-yr

Lighting progress 1980–2020's

2 W/SF

Envelope progress 1980–2020's

Energy intensity in commercial buildings

+ Energy intensity by select fuels, 1979–2018 thousand British thermal units per square foot

Energy intensity in commercial buildings

+ Energy intensity by select fuels, 1979–2018 thousand British thermal units per square foot

Energy intensity in commercial buildings

+ Energy intensity by select fuels, 1979–2018 thousand British thermal units per square foot

Energy intensity in commercial buildings

+ Energy intensity by select fuels, 1979–2018 thousand British thermal units per square foot

End use breakdown for average commercial buildings

Typical modern HVAC design

- + All-in-one HVAC
- + Large central fan-forced rooftop equipment
- + Multiple zones with tight temperature settings
- + Zonal reheat
- + If some is good, more is better "Factor of Safety"

Impact of Design for OffTM

Design for OffTM w/super insulation

Design for OffTM w/super insulation

move away from large **central HVAC** systems

Towards smaller zonal systems

2 – move away from all-in-one HVAC systems

Towards dedicated ventilation systems (DOAS)

3 – right-size mechanical systems

Believe (do) the load calculations

Design for OffTM

Design for OffTM

1. Separate ventilation from heating and cooling (provide ventilation with HRV)

2. Zonal heating and cooling equipment (cycling on load) 3. Right sizing of equipment (ventilation and heat/cool)

A building design approach focused to turn systems off by design

High performance envelopes

Drive down the balance point to turn off heating and cooling for most of the year; improve comfort with stable temperatures

High performance ERV's/HRV's

Turn off heating or cooling equipment

Smaller zonal systems

For heating and cooling, cycle heating and cooling systems on a call from a thermostat; do not run fans continuous

5-10°F deadband

Between heating and cooling setpoints; this will turn off excessive simultaneous heating and cooling

Right size equipment

Reduces excessive energy usage due to short cycling and excessive fan energy

Demand control ventilation

Based on CO2 levels, turns off excessive fan energy

Daylighting controls

Use to turns off lights

Rice Fergus Miller, Inc.

"We put a down jacket on it and turned it off" -Greg Belding, Principal Architect, RFM

Electrify Buildings + Design for Off
EUI: 18.2 kBtu/sf/yr

- + 30,000 SF, 3-story office building
- + Located in Bremerton, WA.
- + Existing Sears warehouse
- + Deep green retrofit
- + Net zero energy ready
- + \$105/SF costs to renovate
- + LEED Platinum
- + Rainwater harvesting

RFM Office Bremerton, WA

Accomplishments through innovation

- + **#1** energy performance in the PNW
- + Energy consumption reduced by 78% below CBEC standard (\$24K savings/yr)
- + Top 4 U.S. highest scoring LEED Platinum NC v2009
- + Harnessed embodied energy (saved 58% in construction costs)
- + Most passive building in the PNW
- + 1st U.S. renovation highest scoring LEED Platinum NC v2009 (92 points)
- + Extreme sustainability at \$105/SF
- + Net zero ready
- + Water consumption reduced by 70%
- + 95% construction waste diverted from landfill

+ Load reduction measures

- \circ Super-insulation
- o 20% glazed (WWR)
- $\circ~$ Heat recovery ventilation

+ HVAC systems

- \circ Zonal heat pumps
- Energy recovery ventilators
- \circ 14 FT Big Ass Fan
- Natural ventilation (passive mode)
- Red/green lights for window operation

Heat pumps off for 70% of the year

OUTSIDE TEMPERATURES (°F)

Passive Mode

Outdoor temp between 55° and 75°

Monthly energy end use breakout

June 2011–May 2012

End use reductions

Smaller mechanical systems

Heating Load

~12 tons

(1,350 SF/ton)

Cooling Load

~22 tons

(850 SF/ton)

Construction costs breakdown (\$/SF)

Occupant feedback:

Priceless

Fire Station #72

ECOTOPE

The most efficient fire station in the United States

Electrify Buildings + Design for Off + When Matters

EUI: 23 kBtu/sf/yr

Project Highlights

- + Super insulation
- + Energy recovery ventilation
- + Ground-source heat pump system for space and domestic water heating with solar preheat
- + Solar thermal + PV (30kW)
- + Rain-water cistern for toilet, laundry, irrigation and truck washing to reduce standard potable water use by 60%

And...

- + LEED Platinum
- + 1st place, ASHRAE Technology Award
- + Top Engineering Projects of 2012, Plumbing Engineer

Right-sized geothermal for heating, cooling, and domestic hot water

- + Only 8 geo bores easily fit in parking lot
- + 3 identical 5-ton heat pumps, loop sized for only 10 tons
- + 1 ton per 1,140 SF for heating and cooling
- + Zoned radiant slabs (seasonal switch-over)
- + 4-pipe fan coils in sleeping rooms
- + Heat recovery ventilation

EUI of regional fire stations

Why are most stations so inefficient?

Continuous ducted central fan systems Ventilation at 3x ASHRAE 62 No heat recovery, electric heat on ventilation air Over lit with no occupancy sensors on the lights

Sitka Public Library

Making the shift from fuel oil to clean electricity

ECOTOPE

Electrify Buildings + Design for Off + When Matters

EUI: 99 > 32 kBtu/sf/yr

Project Highlights

- + Reno Added 50% more space and cut EUI by 2/3.
- + Super insulation
- + Variable refrigerant flow heat pump (VRF) Hydronic
- + Radiant flooring
- + Very High Efficiency (VHE) Dedicated Outdoor Air System (DOAS)
- + Heat pump water heater server room sourced
- + Low-flow plumbing fixtures
- + Energy usage one-third of the national average

And...

+ 1st place, ASHRAE Puget Sound Chapter Technology Award, Existing, Commercial, 2020

100

50

0

812A12011 1012A12011 1212A12011 212A12012 A12A12012

6124/2013

2 612A12012 812A12012 1012A12012 1212A12013 812A12013 61

Operational Costs (\$/yr) (Pre is 8000 SF, Post is 12,500 SF)

Sitka Public Library energy use by outdoor temperature

Sitka Public Library billed energy use

Library energy use index comparison

King County Housing Authority

EUI = 26 kBtu/sf/yr

Electrify Buildings + Design for Off + When Matters

1980s level envelope

+ Uninsulated slab+ U-0.4 double glaze

+ R-11 walls + R-20 roof

No economizers

No direct digital controls

High efficiency lights and plugs

VRF with heat recovery

- + **48 tons**
- + 3 outdoor units
- + 36 ductless units
- + 14 ducted units
- + 50 zones total
- + 1.33 ratio indoor / outdoor units

DOAS via high efficiency ERV

High performance, low cost

Why HVAC matters

Lights, Plugs, Misc. HVAC

ЕСОТОРЕ
System comparison (KCHA)

ECOTOPE

Westside School

Leveraging the old to create a new high-performance space for students and their teachers

Electrify Buildings + Design for Off

Remodeling for efficiency

Client goals

- + Low cost
- + Student comfort
- + Energy Efficiency

Challenges

- + Remodel of existing building
- + Tight budget

System selection

- + Distributed dedicated outdoor air systems (DOAS)
- + Demand controlled ventilation (CO2)
- + Variable capacity airsource split system heat pumps (ductless)
- + Heat pump domestic hot water

Innovation

- + Classroom ERVs
- + Ductless indoor units
- + Ceiling fans for distribution
- + Occupant based control
- + Hybrid ventilation

Energy performance

Energy use comparison old school vs. new school

The new school uses just 30% of the energy of Westside's previous facility. The majority of these savings are in HVAC.

- Domestic Hot Water
 HVAC
 Lighting
- Cooking
- Misc Plugs

Energy performance

Actual energy use of Westside school's leased city of Seattle building and the newly completed Westside school.

ECOTOPE

Take aways

- + Envelopes are important, but HVAC is where the energy is
- + Select a system that can be turned off
- + "Right-size"
- + Net-zero ready can be cheap
- + Heat pump DHW heating can be implemented cost effectively
- + DOAS systems do not require tempering if careful attention is paid to HX selection

Design for OffTM

1. Separate ventilation from heating and cooling (provide ventilation with HRV)

2. Zonal heating and cooling equipment (cycling on load) 3. Right sizing of equipment (ventilation and heat/cool)

ECOTOPE

Design for Off[™]

Jon Heller, PE, LEED AP President

October 5, 2023

City Light Increased Incentives & New Offerings

- Some incentives increased as much as 60%
 - <u>Lighting</u>
 - Lighting controls
 - Insulation
 - Advanced rooftop controls
 - Package terminal heat pumps
- Energy Project Manager new!
- Project Development Incentive new!

Contact an Energy Advisor today to find out if your projects qualify! Call (206) 684-3800 or email SCLEnergyAdvisor@seattle.gov to get started.

THANK YOU

lightingdesignlab.com | 🖂 lightingdesignlab@seattle.gov