Promoting Energy Efficient Lighting Systems (PEELS)

Presented by

Armando Berdiel Chavez, LC, Meng.
Technology Development Supervisor
Spring 2020

Before we begin...

During the Webinar

- Attendees will be muted
- Please use the chat feature in the control panel to submit questions to LDL staff
- The presenter will pause to address questions every ~10 minutes
- Please participate in the online polls.

Following the Webinar

- Please take the short survey
- A recording and the slide deck will be posted on LDL's webpage
- Reach out to <u>LightingDesignLab@seattle.gov</u> with comments or questions.

Powered by

Seattle City Light

Who We Work With

It takes a village...

LDL's Four Core Service Areas

Instructor Background

Armando Berdiel Chavez, M.Eng., LC Technical Development Supervisor

- Lehigh University, B.S.
 - Computer Science & Business

- Engineering Management
- Lutron Electronics (PA)
 - Systems Support
 - Lead Project Coordinator
- Pearl Street LED Systems (NJ, NY)
 - Project Development Engineer

Enough about me...

Let's talk about you...

Learning Objectives

What are We PEELing?

Some Terms, Acronyms, Definitions

Term	Definition
NLC / ALC / LC	Networked Lighting Controls
LLLC	Luminaire Level Lighting Controls
Connected Lighting	LED + NLC
NEB	Non-Energy Benefits
SBE / SB	Smart Building Ecosystem

NETWORKED LIGHTING CONTROLS SERIES

CONTROL TECH TERMS

This guide outlines key terms and concepts you need to know in order to communicate effectively with all project stakeholders.

LET'S GET ON THE SAME PAGE

With the rapid pace of change in the lighting and controls industry, it is easy to confuse the ever-expanding list of new terms, technologies, and concepts being applied to networked lighting control solutions.

Part #1: Understanding System Components

Most Networked Lighting Control (NLC) Systems have basic components in common.

Understanding the discrete components will help you better understand the pros and cons o different systems available on the market.

COMPONENT	WHAT DOES IT DO	HOW DOES IT DO IT	NOTES
Luminaire driver	Controls power to the luminaire and regulates dimming	Various control protocols; 0-10 volt, DALI, DMX	Not all LED fixtures come standard with dimming
	Sends commands and data from luminaire to NLC system	Wireless radio signal to Gateway	Load may be luminaires, receptacles, or motors
	Communicates wirelessly with NLC components and other building systems	RF, cellular, ethernet server	May be wired in very large systems or POE
	A more robust computing platform for NLC's and other whole building systems	Programmed through system computer software	Not required for all NLC but will be needed to interface with other BMS
Configuration tool	Allows users to program functionality wirelessly throughout the NLC system	Programs load controllers and all system devices	Can be an App, a computer application or a mix of proprietary hardware and software
	Allows users to send signals to the system and relevant luminaires	By manually pushing a button or touchscreen	Wall stations were formally just known as "switches" or "dimmers"

NETWORKED LIGHTING CONTROLS SERIES - CONTROL TECH TERMS

(Vague) Theory of Lighting Project Evolution

Incandescent lamps and toggle switches for pennies

Use HID for exterior!

Use CFLs and FL Tubes for Interiors! Use those sensor switches to save energy and meet code

LED is too expensive

Induction Lamps are Coming!!! Mindful LED+NLC Design to Maximize Long Term Gains

Let's Erase the "Saving-Centric" Mentality When Implementing Connected Lighting

What should the Connected Lighting Focus be?

Tenant
Comfort and
Building
Purpose

(2)
Codes &
Recommended
Practices

(3)

Revenue Opportunities

The Odds Have Been Stacked Against NLC

Desired Timeout (Minutes)	Number of Flashes from Light/Motion Sensor
1 Minute	2 Flashes
5 Minutes	3 Flashes
15 Minutes	4 Flashes
30 Minutes	5 Flashes

NLCs Today are Smoother and Leverage NEBs

Even though there is still a long way to go...

The Proliferation of FEATURES...

Controls Persistence

Energy monitoring

Color tuning

Cyber security

... and so many more

Networked Lighting Controls Today

- Distributed
- Wireless
- More Capable
- More Complex
- Less Complicated
- Less Costly
- Easier to Install / Commission
- Compatible
- Integrated

Where do Savings Come From?

- Converting to LEDs
 - Reduces Wattage
 - About 50%-75% reduction
- Adding NLC/LLLC Systems
 - Reduces Operating Hours
 - 8760 hours in a year
 - About 50%-75% reduction

Medium General Service Downtown Network (MDD)

	Jan 2019	Nov 2019	Jan 2020
Per kWh	\$ 0.0925	\$ 0.0919	\$ 0.0987

Four Key Control Strategies – Crash Course

High End Trim or Task Tuning

Occupancy & Vacancy

Daylight Harvesting

Scheduling

How These Control Methods Work Together

At the building level

Energy Savings Strategies & Benefits Outlook

Did You Know... NLC & LLLC

- Luminaire Level Lighting Control
 - Individually Addressable
 - Integrated occupancy and daylight sensors
 - Continuous dimming
 - Networkable
- Benefits
 - Less Components
 - Labor Savings
 - Simple Configuration
 - Future Expandability
 - Reconfigurable

BONUS: Automatically Meets Code

2018 Washington State Commercial Energy Code*

C405.2 Lighting controls. Lighting systems shall be provided with controls that comply with one of the following:

- Lighting controls as specified in Sections C405.2.1 through C405.2.7.
- Luminaire level lighting controls (LLLC) and lighting controls as specified in Sections C405.2.1, C405.2.3
 and C405.2.5. The LLLC luminaire shall be independently configured to:
 - (2.1) Monitor occupant activity to brighten or dim lighting when occupied or unoccupied, respectively.
 - 2.2. Monitor ambient light, both electric and daylight, and brighten or dim artificial light to maintain desired light level.
 - 2.3 For each control strategy, configuration and re-configuration of performance parameters including: bright and dim set points, timeouts, dimming fade rates, sensor sensitivity adjustments, and wireless zoning configuration.
 - 2: Individually Addressable
 - 2.1: Occupancy, Vacancy, Dimming
 - → 2.2: Daylight Harvesting, Dimming
 - 2.3: Networkable

^{*}As per Gov. Inslee – To be Applied Nov 1st, 2020

LLLC Functionality Example

Lights brightby Eights 60:011 Brownshipped ple Brownshipped ple ifacantpspaces

NLC & LLLC Cost Analysis Case Study

Assumption: Labor Rate: \$100/hour

NLC & LLLC Case Study Cost Comparison

	NLC (non-LLLC) Bill of Materials									
#	Part Number	Description	Quantity	Pri	ce	Install (Minutes)	utes) Install \$		Material \$	
1	PJ2-3BRL-GWH-L01	Wall Station	4	\$	21.00	30	\$ 2	00.00	\$	84.00
2	LRF2-DCRB-WH	Daylight Sensor	1	\$	125.00	30	\$	50.00	\$	125.00
3	LRF2-OCR2B-P-WH	Occupancy Sensor	4	\$	89.00	30	\$ 2	00.00	\$	356.00
4	HJS-2-FM	Gateway/Hub	1	\$1	,700.00	60	\$ 1	00.00	\$	1,700.00
5	RMJS-8T-DV-B	0-10V Load Controller	6	\$	152.00	60	\$ 6	00.00	\$	912.00
6	CW-1-WH	Claro Wallplate	4	\$	5.00	0	\$	-	\$	20.00
7	PICO-WBX-ADAPT	Wallbox Adapter	4	\$	8.00	0	\$	-	\$	32.00
8	FIXTURES	Placeholder for Fixtures	16	\$	200.00	30	\$ 8	00.00	\$	3,200.00
							\$ (1,95	0.00)	\$ (6	5,429.00)

	LLLC Bill of Materials									
#	Part Number	Description	Quantity	Pr	ice	Install (Minutes)	In	stall \$	Ma	terial \$
1	PJ2-3BRL-GWH-L01	Wall Station	4	\$	21.00	30	\$	200.00	\$	84.00
2	HJS-2-FM	Gateway/Hub	1	\$	1,700.00	60	\$	100.00	\$	1,700.00
3	CW-1-WH	Claro Wallplate	4	\$	5.00	0	\$	-	\$	20.00
4	PICO-WBX-ADAPT	Wallbox Adapter	4	\$	8.00	0	\$	-	\$	32.00
5	LLLC FIXTURES	Placeholder for LLLC Fixtures	16	\$	270.00	30	\$	800.00	\$	4,320.00
							\$	(1,100.00)	\$ ((6,156.00)

NLC & LLLC Case Study Cost Comparison

NLC (non-LLLC) Net Project Costs				
NLC Materials Cost	\$	(6,429.00)		
Labor	\$	(1,950.00)		
Room Commissioning	\$	(200.00)		
Utility LLLC Incentive	\$	-		
Utility Performance Incentive	\$	500.00		
Net Project Cost	\$	(8,079.00)		

LLLC Net Project Costs				
LLLC Materials Cost	\$	(6,156.00)		
Labor	\$	(1,100.00)		
Room Commissioning	\$	(150.00)		
Utility LLLC Incentive	\$	800.00		
Utility Performance Incentive	\$	600.00		
Net Project Cost	\$	(6,006.00)		

What does the FIRST '1' in 1:1 or 1:Many stand for?

- Load Controllers
- Hubs/Gateways
- Wall Stations
- Day/Occ Sensors

Pause for Questions

Energy Savings ... And?

Connected Lighting Prospectus for Buildings

The 1-9-90 Rule

Leverage Non-Energy Benefits When Discussing Value

Current Market Trends & Dynamics

Market Proliferation*

- 48 systems currently on DLC NLC QPL
- 23 systems are LLLC

Just a Few System Features

•	Controls Persistence	(66%)
		(00/0/

- Energy Monitoring (87%)
- Cyber Security (10%)
- Color Tuning (37%)
- Demand Response (64%)

^{*}Total system count and features pulled from DLC's Networked Lighting Controls QPL 5/27/20

Smart Building Platforms are Increasing and Evolving

Space Utilization

Cost of Empty Space?

Cost of Space Analysis

NLC/LLC Energy Monitoring, Control, & Diagnostics

RAB Lightcloud

Lutron Vive

Lutron Vive

Asset Tracking

VA Pittsburg Healthcare Case

Inventory management inefficiencies at hospitals

EINSTONE Track & Trace - Process Optimization and Efficiency Enhancements

- The Asset Beacon is attached on a movable object and sends signal.
- An EINSTONE Beacon, integrated in the lighting infrastructure, receives the signal from the Asset Beacon.
- Oats is transferred via a Bluetooth Low Energy mesh to a gateway. The gateway sends data to the secured cloud.
- The data is displayed for easy review in a dashboard, e.g. current location, temperature, state, heat maps, statistics and analytics of utilization.

Indoor Positioning & Wayfinding

IoT lights at half its stores

LLLC

LLLC

Demand Response (Traditional Operation: Sneaker-net)

NLC/LLLC Automatic Demand Response

When you receive a Demand Response alert from your utility, turn the Scene On.

Leviton Sector Distributed Lighting

Tunable White Lighting

- Specific color tuning adjusting the correlated color temperature / SPD
- Meant to affect mood or alertness.
- Circadian lighting.
- Simple preference?

Tunable White in Classrooms – PNNL & DOE 2018-2019 Study

Study Conclusions

and learning environment for teachers and students

Infrastructure for the Technologies of Tomorrow

Courtesy of DLC: Interoperability for Networked Lighting Controls (May 19 2020)

Pause for Questions

What strategy[ies] should be most successful in promoting efficient lighting systems?

- Energy Savings
- Infrastructure for Connected Technologies
- Directly solving stakeholder problems
- Utility Dollar Injections

Barrely Batteep Batsle ABetter Chees

Tunnel Mindset on Margins and Value

Can You Recognize The Tunnel Mindset?

The Disconnect...

We block out the voices trying to give us new information

Design Ally:

I can't remember the last time I didn't spec an NLC product...

End-Use Customer:

I need integrated solutions...

"Good, Better, Best" Pathways

			8D
COMFORT	New Retrofit LED Lamp without Controls	New LED Fixture or Retrofit Kit without Controls	New LED Fixture or Retrofit Kit with Integrated Controls
Quality of Light	Good	Better	Best
Smart Capabilities	On/Off	On/Off	On/Off, Dim, Occupancy, Day- light, Color Tuning
Life	C / C C varies by lamp type	(b) (b)	(b) (b) (c)

"Good, Better, Best" Pathways

"Good, Better, Best" Pathways

NEEA NLC/LLLC Retrofit Study

Luminaire Level Lighting Controls Replacement vs Redesign Comparison Study

September 3, 2020

REPORT #E20-315

LLLC/NLC Retrofit Systems Cost Comparison

Table 12. Total Cost Comparison of All Retrofit Solutions

System	Hardware total	Luminaire per unit		Design/ Specification	Total cost	Total cost/ft ²
LLLC System #1	\$4,181.00	\$380.00	\$1,045.00	\$252.76	\$5,383.76	\$6.04
LLLC System #2	\$4,204.77	\$410.00	\$1,536.15	\$379.14	\$6,120.06	\$6.87
LLLC System #3	\$4,455.43	\$490.00	\$1,163.75	\$1,011.04	\$6,630.22	\$7.44
LLLC System #4	\$4,015.96	\$403.00	\$760.00	\$631.90	\$5,407.86	\$6.07
Redesign System #5	\$8,347.07	\$389.00	\$1,654.90	\$5,655.80	\$15,657.77	\$17.57

LLLC/NLC Retrofit Systems Implementation Times

Table 3. Time Required for Install, Programming, and Commissioning

System	Hardware install (HH:MM)	Programming (HH:MM)	Commissioning (HH:MM)	Total (HH:MM)
LLLC System #1	05:15	00:45	03:00	09:00
LLLC System #2	05:50	02:45	04:30	13:05
LLLC System #3	05:40	00:35	04:30	10:45
LLLC System #4	03:30	00:30	02:30	06:30
Redesign System #5	07:05	02:35	06:00	15:40

LLLC/NLC Retrofit Systems Savings Breakdown

Table 5. Average Energy Consumption

		Wh/ft²								
	Total	Lum. 1	Lum. 2	Lum. 3	Lum. 4	Lum. 5	Lum. 6	Lum. 7	Lum. 8	Lum. 9
Baseline	5.11	0.57	0.58	0.57	$0.45^{(1)}$	0.59	0.58	0.59	0.59	0.59
LLLC System #1	1.54	0.23	0.18	0.08	0.25	0.15	0.12	0.25	0.23	0.05
LLLC System #2	1.18	0.15	0.24	0.07	0.26	0.19	0.04	0.07	0.10	0.04
LLLC System #3	1.25	0.22	0.19	0.06	0.18	0.13	0.04	0.24	0.14	0.05
LLLC System #4	1.55	0.43(2)	0.22	0.05	0.21	0.16	0.05	0.17	0.19	0.03
Redesign System #5	1.90	0.41	0.16	0.06	0.40	0.21	0.02	0.40	0.18	0.02

Annual Estimated Savings & by Major Strategies

System	Fixture Zone *	Annual estimated lighting energy savings based on pre-tuning maximum energy consumption						
			Savings due to all controls measures		Savings due to and occupancy	Savings di high-end		
LLLC	Perimeter	74%		74%		0%		
System #1	Middle	49%	51%	37%	45% L	12%	6%	
	Core	32%		25%		7%		
LLLC "2	Perimeter	85%	74%	75%		10%	34%	
	Middle	74%		23%	40%	51%		
System #2	Core	71%		31%		40%		
LLLC	Perimeter	80%		80%		0%		
	Middle	45%	50%	31%	42%	13%	8%	
System #3	Core	25%		15%		10%	- , -	
LLLC	Perimeter	86%		71%		15%		
	Middle	58%	63%	35%	43%	23%	20%	
System #4	Core	47%		26%		21%		
Dodonion	Perimeter	86%		71%		15%		
Redesign	Middle	73%	67% 	23%	32%	50%	35%	
System #5	Core	47%	- · · · · -	7%		40%		

Notes: Annual estimated lighting energy savings attributed to controls relative to pre-tuning maximum energy consumption of each fixture and system.

Never Forget... The Human Factor

4.5 Human factors comfort responses

- Highest satisfaction: LLLC systems being tuned to IES standards
- Overall brightness was found to be lower than expected (Trim)
- Light was more calming and helped focus than FL baseline
- Brighter task (desk) illuminance

Table 8. Study Participant Demographics and Sample Statistics

Those or setting Three paint setting.	Total # subjects	Female/ male	Age			Vision correction	Total # 2-hr session
			18-30	31-45	46-55	Y/N	
Baseline	8	4/4	7	0	1	5/3	22
LLLC System #1	16	8/8	13	3	0	6/10	34
LLLC System #2	12	7/5	8	4	0	5/7	28
LLLC System #3	10	7/3	7	3	0	4/6	34
LLLC System #4	15	8/7	11	3	1	6/9	36
Redesign System #5	15	9/6	14	0	1	4/11	29
Total	76	43/33	60	13	3	30/46	183

No major satisfaction difference between LLLC & NLC

ng design lab

Pause for Questions

Which is NOT a TLED Limitation, Constraint, or Concern

- Ballast/Driver compatibility concerns
- Light quality concerns
- Daylight zoning circuit concerns
- Wall Station confusion concerns
- System lifetime cost concerns

Delivering the RIGHT Project... Barriers... and Solutions

Not "Value" and not "Engineering"

- Removes hardware / features
 last minute to reduce cost
- Other Building contractors upsell
 - EC typically down-sell
- True value engineering "adds" to up-front cost to reduce lifecycle cost

It's about the STAKEHOLDERS – not just the decision maker

Living with the system

Leveraging the system

Implementing the system

Invested in the system

Decision Makers vs. Stakeholders

 Recommenders, Influencers, Gatekeepers

They send key info upstream

Understand level of involvement

■ Get Buy In *EARLY*

Lunera Smart TLEDs Pilot at NYU

- 2017 Pilot at NYU
- Free gear from Lunera
 - Happy decision makers
- Each T8 needed IP address on Client's Network

IT Dept:

Lunera Lighting

Map Out Decision Makers and Tiered Stakeholders

 Appropriate Topics to the Appropriate
 Stakeholder

Create map of tasks and influencers.

Don't Force the Horse

A Solution Looking for a Problem?

What are the most pressing problems/opportunities for your [Insert Building Type Here]?

Tie-in with Stakeholder's Purpose & Goals

Foster Relationships Through Education, Awareness, and Continuous Improvement

Pause for Questions

Lighting Project Financials 101

Discuss The Cost of Waiting

- Cost of Waiting Urgency
 - Utility funding
 - Continue overspending on energy
 - Continue overspending on human capital
 - Equipment nearing EOL
- Listen to Stakeholder Objections
- Buy in from stakeholders

Simple Payback

- Not a complex measure
- Initial financial talking point
- TLED projects usually have lower paybacks
- Real story is more complex

Simple Payback vs. Life Cycle Cost

To be expressed factoring Time Value of Money

\$100 now = \$100 next year? ... Time Value of Money

- Compounding
 - Sum + Interest is reinvested
 - Rate: 10%

2019 2020		2021	2022			
\$	100.00	\$	110.00	\$ 121.00	\$	133.10

add add add 10% of \$100 10% of \$110 10% of \$121

- Discounting
 - Interest used in cash flow analysis
 - Set by companies. Fluctuate
 - Weighted Average Cost of Capital (WACC)

- Focus:
 - Returns on Investment measures
 - Present Value
 - Net Present Value

Return on Investment

Tips on Thinking Present Value

- Present Value = today's equivalent of a future payment
- Discount Rate adjusts a future payment to its present value
- "Future payments are discounted to their Present Value"
- The higher the discount rate, the lower the present value
- The further the payment is in the future, the lower is present value

Net Present Value

- **Net Present value:** Present value of a cash flow, minus the initial investment or outlay
 - Commonly used to compare investments. Even if they don't have the same lifetime.

Simplified 10-Year Example

Discount Rate:	10%										
Date:	Today	End of Year	End of Year	End of Year	End of Year	End of Year	End of Year	End of Year	End of Year	End of Year	End of Year
	0	1	2	3	4	5	6	7	8	9	10
Cash Outflows											
Lighting System	: \$(65,400.00)	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Rebate Incentives	: \$ 15,400.00	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Outflow	\$(50,000.00)										
Cash Inflows											
Energy Savings	:	\$10,000.00	\$10,300.00	\$10,609.00	\$10,927.00	\$11,255.00	\$11,593.00	\$11,941.00	\$12,299.00	\$12,668.00	\$13,048.00
Maintenance Savings	:	\$ 5,000.00	\$ 5,150.00	\$ 5,305.00	\$ 5,464.00	\$ 5,628.00	\$ 5,796.00	\$ 5,970.00	\$ 6,149.00	\$ 6,334.00	\$ 6,524.00
Inflows		\$15,000.00	\$15,450.00	\$15,914.00	\$16,391.00	\$16,883.00	\$17,389.00	\$17,911.00	\$18,448.00	\$19,002.00	\$19,572.00
Annual Cash Flows	: \$(50,000.00)	\$15,000.00	\$15,450.00	\$15,914.00	\$16,391.00	\$16,883.00	\$17,389.00	\$17,911.00	\$18,448.00	\$19,002.00	\$19,572.00
PV of Cash Flows	: (\$50,000.00)	\$13,636.36	\$12,768.60	\$11,956.42	\$11,195.27	\$10,483.01	\$9,815.64	\$9,191.18	\$8,606.13	\$8,058.70	\$7,545.85
	10-Year	Year-1	Year-2	Year-3	Year-4	Year-5	Year-6	Year-7	Year-8	Year-9	Year-10
NPV:							\$19,855.31	\$29,046.48		\$45,711.31	\$53,257.17
Simple Payback	3.19		,	,	,						
ROI	34%										

One Page Proposal

- Components
 - Title and Subtitle
 - Target
 - Problem statement
 - Financial Summary
 - Payment Terms
 - Status
 - Action -> PO
 - Appendix

One Page Proposal

20% more Light with 40% Lower Energy Cost for the Parking Garage at 123 Project St.

Improving security, saving energy, lowering operating costs, and boosting the Energy Star score

Target: TO IMPROVE PARKING-AREA LIGHTING WITH ENERGY EFFICIENT, LONG-LASTING LED TECHNOLOGY

- To Address tenant safety concerns by increasing average lighting levels by 20% and moving to "whiter" light, enhancing visibility for both occupants and security camera.
- To reduce operating and maintenance costs for parking-area lighting by \$15,000 the first year (10-year NPV of over \$53,000.
- To capture \$15,400 in Energy Trust incentives, covering 24% of project costs
- To avoid a quarter-million pounds of CO2 emissions annually, boosting ENERGY STAR score to 70 from 68

Financial: Project first cost is estimated at \$50,000 after a utility incentive of \$15,400. A 10-year analysis yields a net present value of \$53,256 and a simple payback of 3.3 years.

Simple Payback 3.2 years
Net Present Value* \$53,256
Return on Investment 34%

^{*} NPV Assumes 10-year analysis term, 10% discount rate

Lighting as a Service = Netflix and Lit?

- No up-front capital costs
 - Equipment, Commissioning, Maintenance by Provider
 - Monthly Payment from Savings
- Energy Metering
- Contract with Provider and Implementer

Seattle City Light EEaS Pilot

Figure 1. Example of Tenant Bill Neutrality

Energy Efficiency, News

RENEWABLE ENERGY WORLD

Seattle City Light is piloting America's first Energy Efficiency-as-a-Service program

By Jennifer Runyon | 6.19.20

Figure 3. Basis of EEaS Seattle City Light Charges

Stakeholder Objection

Counter Suggestion

- "I don't have any budget for an upgrade"
 - Consider existing cost for system and equipment maintenance
 - Discuss the cost of waiting
 - Demonstrate lifetime economics
 - Highlight NEBs to different stakeholders
 - Divide project into smaller phases
 - Project will set both an economic and technical infrastructure for additional value-add building projects

- "I Just want the cheapest option"
 - Provide at least 2 options: A cost-based option and a valueadded benefit option for the building

When should the Simple Payback calculation be Used over the Lifetime Calculation

- When you want the complete picture
- When you want to plan for the life of the system
- To get a quick snapshot of a project's financials
- Included in the project proposal

Pause for Questions

Tools and Teamwork to Make the Dream Work

Codes & Regulations as Tool to Implement NLCs

LIGHTING POWER ALLOWANCES

Great Tool to Start These Talks: Lighting audit

- Attend LDL Audit & Retrofit Class;)
- Benchmark Existing Conditions
- Estimate Energy, Labor, Rebate Savings
- Propose Multiple Solutions,
 Model kWh Savings
- Lead to Life Cycle Analysis and Non-Energy Benefits
- Tell a Story from Audit to Proposal

Interview: Healthcare Energy Manager

- Lighting Audit helped start conversation, decision
 - T12 in BOH!
 - Feedback from auditor
 - Help Decision Makers Prioritize
- SME familiar handling special space types
- Financials
 - Simple Payback > ROI, IRR
 - \$Labor > \$Hardware
 - Rebates!
- NEB
 - Ease of Maintenance, feedback
 - Facilities could reprogram
 - No need for software contract

Energy Management and Sustainability

Angela Mu Energy Manager

Why Utilities like City Light Care About Connected Lighting?

Cost Effective Energy Savings

Ensures optimal project savings for lifetime of EE upgrade

Elite Customer Service

Relationship with customers for continuous improvements

Gateway to Connected Stuff

Keeps utilities relevant and part of the solution

Program Design Considerations: Savings & Incentives

Example of prescriptive savings in City Light's lighting program

Space Use Type	Networked Lighting Controls	Luminaire Level Lighting Controls			
Break Room	40%	50%			
Classroom	25%	25%			
Hallway	40%	50%			
Lobby	40%	50%			
The Loo	40%	50%			
Warehouse	40%	50%			
And so on and so forth					

Regional Technical Forums: Non-Residential Lighting Retrofits protocol

Dictionary

Search for a word

1. Arranged or existing for the present, *possible* to be changed later

Simplify Approach:

- prescriptive savings
- prescriptive incentives

Right-Sized Incentive

City Light NLC \$50/Fixture 2020 Requirements

- DLC NLC QPL System
- Programmed HET, Occupancy,
 Daylight Harvesting
- Min (2) Zones per 300sqft
- Pre-Install
 - SOO
 - Floor Plan
- Post-Install
 - As Builts
 - Site Visit

- TLEDs
- Fixtures under 20W
 - HET under 20W = prorated \$50 incentive

PROGRAM REQUIREMENTS

NLC Key Collaboration Tool: Sequence of Operations

The Sequence of Operations communicates intent

Area	Typical open office					
Lighting and controls	Lights	Zones (a) - (d)	Fully dimmable lights controlled in this area			
	Daylight Zones	Zones (a) - (b)	Daylight rows 1 and 2 will dim independently. Lights will automatically adjust to daylight maintaining recommended 30FC on task surfaces			
	Manual Wall Control	Zones (a), (b), (c), (d)	For each independent zone, the user can select scenes on/off, 50%, and can raise/lower the zone			

Leverage Partner's Procedural Efficiency

- Quoting tools
- Project Development tools
- One lines with Packaging
- Room Packaging
- Pre-Pairing
- Pre-Commissioning

PNW Regional Resources

Take a load off (literally). Join the Network.

Education & Market Development

LDL's Flagship Workshop

1 & 2 Day NLC Workshops

for

EVERYBODY...

featuring

Hands-On Learning & Practical Application

- Specifics of control methods
- Developing sequence of operations
- Specification writing & interpreting
- System design & set up
- And so much more!!!

NLC / LLLC Best Practice Guides and Video

Networked lighting control systems offer plenty of benefits – but potential customers can feel overwhelmed or turn skeptical when they perceive too many promised benefits. Effectively communicating the value of NLC systems starts with knowing your audience – and planning your approach.

STEP 1: IDENTIFY YOUR STAKEHOLDERS

Yes, working with the key decision maker is paramount to making a project come together - but the key decision maker represents a cohort of stakeholders whose opinions matter.

STEP 2: SIMPLIFY YOUR MESSAGE

Instead of trying to convey all the potential syst benefits to a general audience – examine the cr needs for each stakeholder group and use conc language to address their needs.

building operators?

CONTRACTORS AND INSTALLERS Where are the current contractor pain points?

BUILDING OW Which non-er benefits matter this decision r

NETWORKED LIGHTING CONTROLS SERIES - COMMUNICATING THE VALUE PROPOSITIO

Part #3: Networked Lighting Controls and Luminaire Level Lighting Controls, What's the Difference?

LLLC IS A TYPE OF NETWORKED LIGHTING CONTROLS SYSTEM

NLC and Luminaire Level Lighting Controls (LLLC) systems both deploy the same control strategies to ensure code compliance, tenant comfort, and sustained energy savings. Some products can be configured to operate in either mode.

The primary difference (and key concept) between these two approaches can be understood as a 1 to 1 vs. a 1 to many relationship.

NETWORKED LIGHTING CONTROLS

A Networked Lighting Controls (NLC) system is the combination of sensors, network interfaces, wall stations, and controllers that affect lighting changes to luminaires.

In a NLC system configuration there is a one to many relationship with one sensor controlling many luminaires.

LUMINAIRE LEVEL LIGHTING CONTROLS

Increasingly, manufacturers are integrating NLC system components directly into luminaires. With LLLC, there is a one to one relationship with every light fixture being capable of being controlled directly. Each luminaire is its own control zone or may be grouped into zones with multiple luminaires simplifying design, installation, and space reconfiguration.

BASIC NLC CONFIGURATION

NETWORKED LIGHTING CONTROLS SERIES - CONTROL TECH TERMS

19030 NEEA-LDL-LLLC-Review Copy 7:06 / 8:30

Click to access the LDL networked lighting control learning guides

00

Project Specific Consults and Mockups

Stay Tuned: LDL User Experience Study

Informing and Increasing Acceptance: The NLC User Experience

Image by Cooper

Ease of Use

Functionality

Operations

Pause for Questions

And now – a few words from LDL

Upcoming LDL Online Events

LDL Course	Delivery Date	Time
What Went Wrong?	Sept 22	10:00 - Noon
Power Over Ethernet	Oct 06	10:00 - Noon
NLC for Healthcare Environments	Oct 20	10:00 – Noon
Fundamentals of NLC (Side A – Theory & Technology)	Nov 03	10:00 - Noon
Fundamentals of NLC (Side B – Practical Application)	Nov 04	10:00 - Noon

Today's slide deck and previous online courses can be found on our <u>website</u>

Click - Call - Connect

- Armando Berdiel Chavez
 - **206-475-2722**
 - armando.berdiel@seattle.gov

Visit us online

Education

Advance your knowledge of complex lighting systems and energy-efficient strategies. From the science of light to the best practices of design...

LEARN MORE

Resources

Linking you to programs and technology experts that enhance your projects and support your business.

TAP INTO

OR Email Us lightingdesignlab@seattle.gov

Todays slide deck will be posted here!

With support from 2020 member utilities

Please take the online survey once you exit the webinar

We'll SEE you on the next call... ☺

